## 第6章

# 非常電源

## 非常電源

| 第 1  | 用語の意義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 1   |
|------|------------------------------------------------|-----|
| 第2   | 非常電源の設置種別・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 1   |
| 第3   | 非常電源専用受電設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 1   |
| 第 4  | 自家発電設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 5   |
| 第5   | 蓄電池設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 1 5 |
| 第6   | 燃料電池設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 1 8 |
| 第7   | 非常電源回路等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    | 1 8 |
| 第8   | 特例基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 28  |
| 別記 1 | I 負荷出力合計(K)の算出方法・・・・・・・・・・・                    | 4 2 |
| 別記 2 | 2 発電機出力係数(RG)の算出方法・・・・・・・・・                    | 5 0 |
| 別記3  | 3 発電機出力係数(RG)の算出式(詳細式)・・・・・・・                  | 5 7 |
| 別記 4 | 1 原動機出力係数(RE)の算出方法・・・・・・・・・                    | 6 0 |
| 別記 5 | 5 原動機出力係数(RE)の算出式(詳細式)・・・・・・・                  | 6 6 |
| 別記6  | ら 諸元表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 68  |

## 非常電源

第1章から第5章までの消防用設備等に設けられる非常電源及び配線については、当該部分の規定によるほか、次による。

#### 第1 用語の意義

この章において、次に掲げる用語の意義は、それぞれ当該各項に定めるところによる。

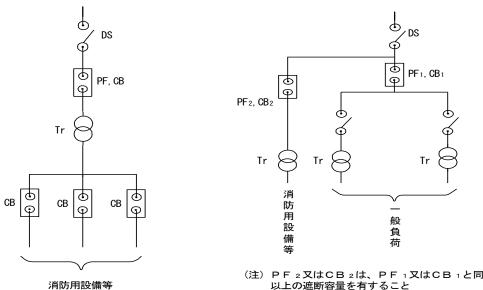
- 1 キュービクル式とは、変電設備、発電設備、蓄電池設備又は燃料電池設備 を閉鎖型の鋼板製の箱に収容したものをいう。
- 2 耐火配線とは規則第12条第1項第4号ホの規定による配線をいう。
- 3 耐熱配線とは規則第12条第1項第5号の規定による配線をいう。
- 4 一般負荷とは消防用設備等以外の負荷をいう。

#### 第2 非常電源の設置種別

非常電源の種別は、消防用設備等その他の種類に応じ、別表 6-1 の例によるものとする。

#### 第3 非常電源専用受電設備

#### 1 機器


- (1) 高圧又は特別高圧で受電する非常電源専用受電設備の低圧回路の配電 盤及び分電盤(以下「配電盤等」という。)(高圧又は特別高圧内で分岐 する配電盤等を除く。以下この章において同じ。)は、規則第12条第1 項第4号イ(ホ)の規定の例により設置するほか、設置場所に応じ別表6 -3によること。
- (2) 低圧で受電する非常電源専用受電設備の配電盤等並びにその非常電源 回路に配電盤等を設ける場合は規則第12条第1項第4号イ(ホ)の規定の 例により設置するほか、設置場所に応じ別表6-3によること。

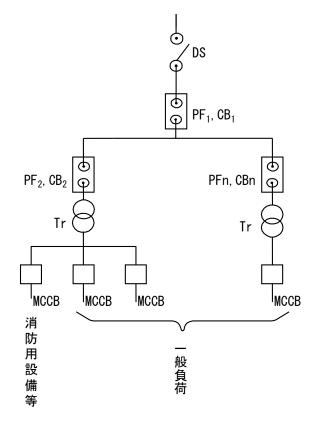
#### 2 設置方法

(1) 非常電源専用受電設備の結線は、次図によること。


#### 非常電源専用受電設備の結線方法

非常電源専用の受電用遮断器を設け、消防用設備等へ電源を供給する場合の例




(注) PF2又はCB2は、PF1又はCB1と同等 以上の遮断容量を有すること

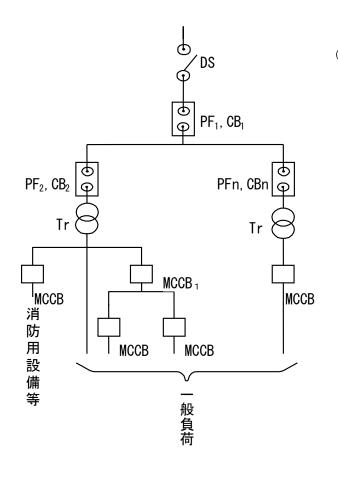
非常電源専用の変圧器(防災設備専用の変圧器であって、その二次側から各 負荷までを非常電源回路に準じた耐火配線としている場合を含む。)を設け、消 防用設備等へ電源を供給する場合の例



(注)□一般負荷の変圧器一次側には、受電 用遮断器 (PF又はCB)より先に遮 断するPF1又はCB1を設けるこ ٠. ٠

#### 一般負荷を共用する変圧器で、消防用設備等へ電源を供給する場合の例

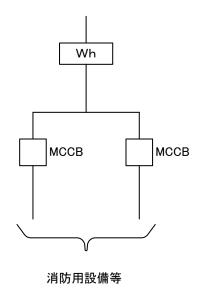



- (注) 1 一般負荷の変圧器一次側には 受電用遮断器 (PF1又はCB1) より先に遮断するPFn又はCBn を設けること。
  - 2 共用変圧器の二次側遮断器は次のものとすること。
    - 1の遮断器の定格電流≦変圧器 二次側の定格電流
    - ・ 遮断器の定格電流の合計≦変圧 器二次側定格電流×2.14 (不等率 1.5/需用率 0.7)
    - (PF1又はCB1)及び(PF2 又はCB2)より先に遮断するもの とする。
    - 十分な遮断容量を有するものを 設ける。

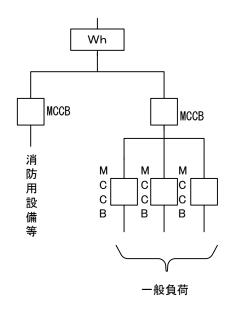
#### 参考

不等率=各負荷の最大需要電力の和/総括 した時の最大需要電力

需用率=最大需要電力/設備容量


一般負荷と共用する変圧器の二次側に一般負荷の主遮断器を設けその遮断器 の一次側より消防用設備等へ電源を供給する場合の例




- (注) 1 一般負荷の変圧器一次側には、 受電用遮断器 (PF1又はCB1) より先に遮断するPFn 又はCBn を設けること
  - MCCB<sub>1</sub>は十分な遮断容量を 有し、(PF<sub>1</sub>又はCB<sub>1</sub>)及び(P F<sub>2</sub>又はCB<sub>2</sub>)より先に遮断する ものとする。
  - 3 MCCB1の定格電流は、共用変 圧器の二次側の定格電流の 1.5 倍 以下とし、かつ、消防用設備等の MCCBとの定格電流の合計は 2.14 倍以下とすること

低圧で受電し消防用設備等へ電源を供給する場合の例

非常電源専用で受電するもの



#### 一般負荷と共用で受電するもの



| 略号   | 名 称     |
|------|---------|
| DS   | 断路器     |
| ΡF   | 電力用ヒューズ |
| СВ   | 遮断器     |
| Τr   | 変圧器     |
| MCCB | 配線用遮断器  |
| WH   | 電力量計    |

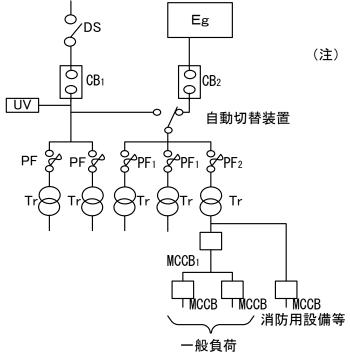
- (2) 非常電源専用受電設備の周囲には、別表6-2により保有距離をとること。
- (3) 非常電源専用受電設備の非常電源回路に設ける電力量計は火災の影響を受けるおそれのない場所に設置すること。ただし、次のとおり措置された収納箱に電力量計を収納する等、耐熱保護を講じる場合にあってはこの限りでない。
  - ア 板厚 1.6 ミリメートル以上の鋼板製のものとすること
  - イ 非常電源回路内に設ける電力量計と他の電力量計との間を板厚 1.6 ミリメートル以上の隔壁(セパレーター)で区画すること。
  - ウ 前面にガラスを設ける場合は網入りガラスとすること。

#### 第4 自家発電設備

自家発電設備は規則第12条第1項第4号ロの規定によるほか、次による。

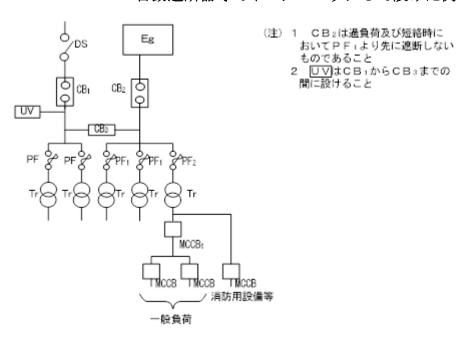
#### 1 機器

自家発電設備回路にキュービクル式の変電設備及び配電盤等を設ける場合は、 規則第12条第1項第4号イ(二)の規定の例並びに第3.1.(1)及び(2)の例 により設けること。


#### 2 設置方法

(1) 自家発電設備の結線は、次図によること。

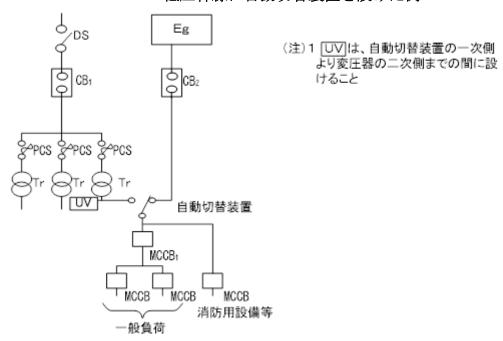
自家発電設備の結線方法


高圧発電設備で供給するもの

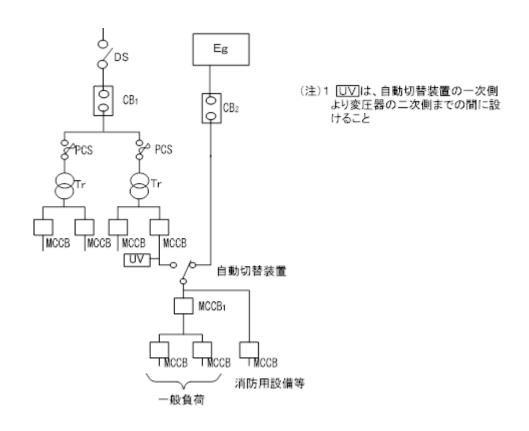
自動切替装置を設けた例



- (注) 1 PF2及びCB2は過負荷及び 短絡時においてMCCB1より先 に遮断しないものであること
  - 2 CB₂は過負荷及び短絡時に おいてPF₁より先に遮断しない ものであること
  - 3 **UV** はCB₁の二次側より自動 切替装置までの間に設けること


## 自動遮断器等でインターロックして設けた例



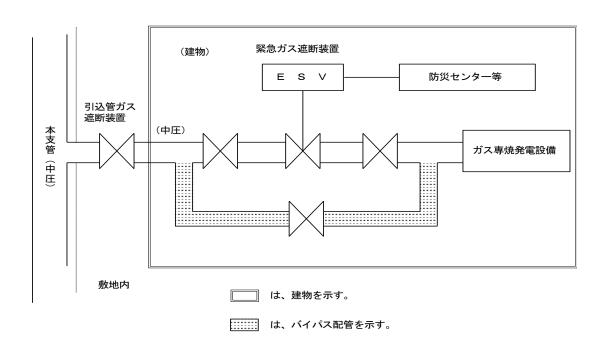

| 略号   | 名称                  |
|------|---------------------|
| DS   | 断路器                 |
| СВ   | 遮断器                 |
| UV   | 不足電圧継電器等(自家発電設備始動用) |
| PF   | 電力ヒューズ              |
| Tr   | 変圧器                 |
| MCCB | 配線用遮断器              |
| PCS  | プライマリーカットアウトスイッチ    |
| Еg   | 自家発電設備              |

## 低圧発電設備で供給するもの

## 低圧幹線に自動切替装置を設けた例



## 低圧分岐回路に自動切替装置を設けた例




- (2) 自家発電設備の周囲には、別表6-4により保有距離をとること。
- (3) 起動信号を発する検出器(不足電圧継電器等)は、高圧の発電機を用いるものにあっては、高圧側の常用電源回路に、低圧の発電機を用いる ものにあっては、低圧側の常用電源回路に設けること。
- (4) 自家発電設備を設置した室には、非常電源を付置した換気装置を設けること。
- (5) 自家発電設備回路にキュービクル式の変電設備及び配電盤等を設ける場合は、第3.2.(2)の例により保有距離をとること。
- (6) 消防用設備等の作動中に停電した場合は、当該消防用設備等に対して 自家発電設備の電圧が確立した時点で瞬時に電力が供給できる装置を設 けること。
- (7) 消防用設備等の常用電源及び非常電源として使用する気体燃料を用いる発電設備「常用防災兼用ガス専焼発電設備」(以下「ガス専焼発電設備」 という。)の設置方法は、(1)~(6)の例によるほか次による。
  - ア 一般社団法人日本内燃力発電設備協会において、主燃料の安定供給 の確保に係る評価を受け、認められたものについては、自家発電設備 の基準(昭和48年消防庁告示第1号)第2第2号ただし書において準 用する同基準第2第1号(13)ロの規定に適合しているものとして取り 扱うものとする。
  - イ 自家発電設備の基準第2第2号に規定する「非常電源用の燃料」(以下この号において「予備燃料」という。)を設置する場合は次のとおりとすること。
    - (ア) 予備燃料は屋外(地上)に設置すること。ただし、屋外(地上) に設置できない場合にあっては、安全対策を講じた上で、31メートル又は10階以下の建物の屋上に設置できるものであること。
    - (イ) 気体の予備燃料を保有するガス専焼発電設備で、連結送水管(加圧送水装置を設けるものに限る。)の電源を供給するものにあっては、(7立方メートル)を加えたものとすること。また、平成10年1月制定「枚方寝屋川消防組合へリコプター屋上緊急離着陸場等の設置指導基準」に基づき設置する緊急離着陸場又は緊急救助用スペースの夜間照明設備(以下「屋上緊急離着陸場等の夜間照明」という。)に電源を供給するものにあっては、予備燃料の保有量を4時間以上連続して運転できる容量にボンベ1本(7立方メートル)を加えたものとすること。
  - ウ ガス供給配管系統をガス専焼発電設備以外の他の機器等と共用する 場合は、他の機器等によりガス専焼発電設備に支障を与えない措置が

講じられていること。

- エ 緊急ガス遮断装置は専用とし、常時保安状況を監視できる場所(防 災センター等が設置されている場合は当該防災センター等という。)か ら遠隔操作できる性能を有すること。
- オ 緊急ガス遮断装置の点検時等に安定的に燃料の供給を確保するため、 次図の例によりバイパス配管を設置すること。

#### 緊急ガス遮断装置のバイパス配管



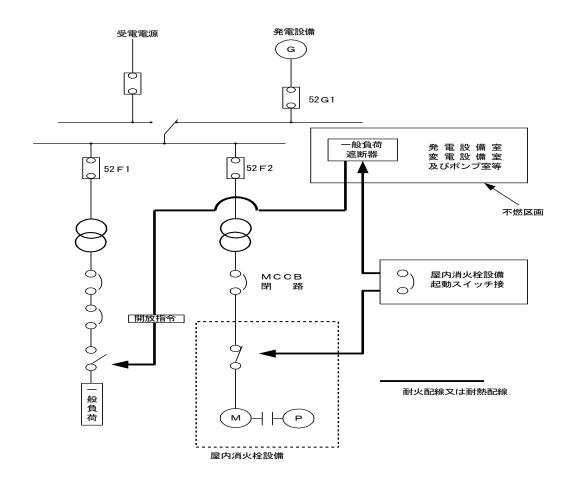
- カ 点検等によりガス専焼発電設備から電力の供給ができなくなる場合 には、防火対象物の実態に即して次に掲げる措置を講じる必要がある こと。
  - (ア) 非常電源が使用不能となる時間が短時間である場合
    - A 巡回の回数を増やす等の防火管理体制の強化が図られている こと。
    - B 防火対象物が休業等の状態にあり、出火危険性が低く、また、 避難すべき在館者が限定されている間に点検等を行うこと。
    - C 火災時に直ちに非常電源を立ち上げることができるような体制にするか、消火器の増設等により初期消火が適切に実施できるようにすること。
  - (イ) 非常電源が使用不能となる時間が長時間である場合(ア)で掲げ

た措置に加え、必要に応じて代替電源(可搬式電源等)を設けること。

キ ガス専焼発電設備が設置されている部分には、ガス漏れ火災警報設備を設置すること。

また、ガス漏れ火災警報設備等の検知部は、ガス専焼発電設備の設置されている部屋、キュービクル内(エンクロージャーを含む。)、ガス供給管の外壁貫通部及び非溶接接合部付近に設けるものとし、作動した検知部が何処の部分であるか防災センター等で確認できる措置が講じられていること。ただし、ガス事業法等によりガス漏れ検知器の設置が規定されており、作動した検知部が何処の部分であるか防災センター等で確認できる措置が講じられている部分を除く。

ク 切替え信号により負荷の切替えを行う場合のガス専焼発電設備の出力算定については、負荷の切替えを行う前の出力算定及び負荷の切替えを行った後の出力算定を第4.3の例によりそれぞれ算定し、大なる出力を有するものを設置すること。


#### 3 出力算定

自家発電設備の出力算定は、次による。

- (1) 自家発電設備に係る消防用設備等のすべてに所定の時間電力を供給できる出力以上であること。ただし、次のいずれかに適合する場合は、この限りでない。
  - ア 同一敷地内の異なる防火対象物の消防用設備等に対し、自家発電設備を共用する場合は、それぞれの防火対象物ごとに必要とされる消防用設備等の負荷の総容量を計算し、その容量が最も大きい防火対象物に対して電力を供給できる出力とすることで足りる。
  - イ 消防用設備等の種別又は組み合わせ若しくは設置方法等により同時 に使用する場合があり得ないと思われるもので、その容量が最も大き い消防用設備等の群に対して電力を供給できる容量がある場合
- (2) 自家発電設備は、全負荷同時起動ができるものであること。ただし、 逐次5秒以内に順次電力を供給できる装置を設けた場合は、この限りで ない。▲
- (3) 自家発電設備を消防用設備等以外の負荷(以下「一般負荷」という。) と共用する場合は、一般負荷の容量を加算し消防用設備等への電力供給 に支障を与えない出力であること。
- (4) 消防用設備等の使用時のみ一般負荷を遮断する方式で次に適合するものにあっては、前(3)に関わらず、当該一般負荷の容量は加算しないことができる。ただし、この場合においても、一般停電時(一般負荷のみ

起動時) と火災時(一般負荷を切り放した後の消防用設備等起動時)の 2種類の計算を行い支障がないことを確認する必要があるもの。

- ア 火災時及び点検時等に、電源が遮断されることによって二次的災害 の発生がないものであること。
- イ 回路方式は、常時消防用設備等に監視電流を供給しておき、屋内消火栓設備、スプリンクラー設備、泡消火設備等のポンプを用いる設備 及び排煙設備のいずれかの起動時に一般負荷を自動的に遮断するもの であること。
- ウ 遮断した一般負荷の復旧は、手動で行う方式とすること。
- エ 一般負荷を遮断する場合の操作回路等の配線は、耐火配線又は耐熱 配線とすること。(次図)
- オ 一般負荷の電路を遮断する機器は、発電設備室、変電設備室及びポンプ室等の不燃材料で区画された部分で容易に点検できる位置に設けること。(次図)
- カ 前才の機器には、その旨の表示を設けておくこと。



(5) 自家発電設備に必要とされる出力の算定に当たっては、発電機出力及 び原動機出力をア及びイに示す方法によりそれぞれ求め、当該発電機出 力及び原動機出力の整合をウに示す方法により図るものとする。

さらに、この結果に基づき、適切な発電機及び原動機を選定し、当該 組み合せによる発電機出力を自家発電設備の出力とするものとする。た だし、総務省消防庁監修の自家発電設備の出力算定ソフトウェアによる もの又は国土交通省等において示している自家発電設備の出力算定の方 法のうち、本算定方法と同様の手法により行われているものにあっては 当該方法によることができるものとする。

ア 発電機出力の算出

発電機出力は、次式により算出すること。

 $G = RG \cdot K$ 

G : 発電機出力(kVA)

RG:発電機出力係数(kVA/kW)

K:負荷出力合計(kW)

この場合における負荷出力合計及び発電機出力係数の算出は、次によること。

- (ア) 負荷出力合計(K)の算出は、別記1によること。
- (イ) 発電機出力係数 (RG) は、次に掲げる4つの係数をそれぞれ 求め、それらの値の最大値とすること。この場合における各係数 の算出については、別記2によること。

なお、負荷出力合計が大きい場合、より詳細に算出する場合等 にあっては、別記3に掲げる算出方式によることができること。

- RG1: 定常負荷出力係数と呼び、発電機端における定常時負荷 電流によって定まる係数
- RG2: 許容電圧降下出力係数と呼び、電動機などの始動によって生ずる発電機端電圧降下の許容量によって定まる係数
- RG3:短時間過電流耐力出力係数と呼び、発電機端における過渡時負荷電流の最大値によって定まる係数
- RG4: 許容逆相電流出力係数と呼び、負荷の発生する逆相電流、 高調波電流分の関係等によって定まる係数
- イ 原動機出力の算出

原動機出力は、次式により算出すること

 $E = R E \cdot K$ 

E:原動機出力(kW)

RE:原動機出力係数(kW/kW)

K: 負荷出力合計(kW)

この場合における負荷出力合計及び原動機出力係数の算出は、次によること。

(ア) 負荷出力合計(K)の算出は別記1によること。

(イ) 原動機出力係数(RE)は、次に掲げる3つの係数をそれぞれ 求め、それらの値の最大値とすること。この場合における各係数 の算出については、別記4によること。

なお、負荷出力合計が大きい場合、より詳細に算出する場合等 にあっては、別記5に掲げる算出方式によることができること。

RE1:定常負荷出力係数と呼び、定常時の負荷によって定まる 係数

RE2: 許容回転数変動出力係数と呼び、過渡的に生ずる負荷急変に対する回転数変動の許容値によって定まる係数

RE3: 許容最大出力係数と呼び、過渡的に生ずる最大値によって定まる係数

#### ウ 発電機出力及び原動機出力の整合

自家発電設備として組み合わせる発電機及び原動機は、前記ア及び イにおいて算出されたそれぞれの出力を次式に示す整合率(MR)で 確認し、当該値が1以上となっていることが必要であること。

また、適切な組み合わせとしては、当該値を 1.5 未満としておくことが望ましい。

なお、整合率が1未満の場合にあっては、原動機出力の見直しを行い、当該出力の割増を行うことにより、1以上とすること

$$\mathbf{M} \mathbf{R} = \frac{\mathbf{E}}{\frac{\mathbf{G} \cdot \mathbf{cos}\theta}{\eta \mathbf{g}}}$$

別記2及び別記4による場合は、

$$MR = 1.13 \frac{E}{G \cdot Cp}$$
 となる

MR :整合率

G : 発電機出力 (kVA)

cos θ:発電機の定格力率 (0.8)

ng:発電機効率

E:原動機出力(kW)

C p : 原動機出力補正係数

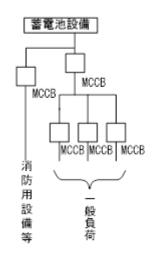
| 発電機出力G(k V A) | 原動機出力補正係数Cp |
|---------------|-------------|
| 62. 5 未満      | 1. 125      |
| 62. 5以上300未満  | 1. 060      |
| 300 以上        | 1. 000      |

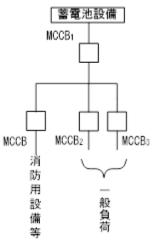
- (注) 原動機出力補正係数は、発電機効率ηgを標準値(0.9) として計算を行っていることから、小出力発電機において 誤差が大きくなるので、その効果を補正するものである。
- エ 自家発電設備の出力の算出結果については、様式1から様式4までの計算シートに記入すること。ただし、第4.3.(5)のただし書きにより出力算定した結果については、当該所定の様式に記入することができること。
- (6) 既存の自家発電設備で消防用設備等に係る負荷出力の変更があった場合等は、本算定方法により出力の見直しを行い、その結果に基づき適正なものに改修する等の措置を講じること。

#### 第5 蓄電池設備

蓄電池設備は規則第12条第1項第4号ハの規定によるほか、次による。

1 機器


蓄電池設備回路に配電盤等を設ける場合は、第3.1.(2)の例により 設けること。


- 2 設置方法
  - (1) 蓄電池設備の結線は、次図の例によること。

#### 蓄電池設備の結線方法

主遮断器の一次側より分岐する場合

主遮断器の二次側より分岐する場合





(注) 主遮断器MCCB1は過負荷及び 短絡時にMCCB2、MCCB3より先に遮断しないものであること

| 略号   | 名 称    |
|------|--------|
| МССВ | 配線用遮断器 |

- (2) 蓄電池設備の周囲には、別表6-5により保有距離をとること。
- (3) 蓄電池設備の充電装置への配線は、配電盤等から専用の回路とし、当該回路の開閉器等には、その旨を表示すること。
- (4) 蓄電池設備回路に設ける配電盤等は第3.2.(3)によること。

#### 3 容量算定

蓄電池設備の容量算定は、次による。

- (1) 容量は、許容最低電圧(蓄電池の公称電圧の80パーセントの電圧をい う。)になるまで放電した後24時間充電し、その後充電を行うことなく 消防用設備等を1時間以上監視、制御等を継続した直後において、消防 用設備ごとに別表6-1の使用時間以上有効に作動することができるも のであること。ただし、ガス漏れ火災警報設備及び誘導灯にあっては、 当該監視状態は必要としない。
- (2) 容量は(1)によるほか第4.3.(1)及び(3)の例によること。
- (3) 1の蓄電池設備で2以上の消防用設備等に電力を供給し、同時に使用 する場合の容量は、使用時間の最も長い消防用設備等の使用時間を基準 とし算定すること。

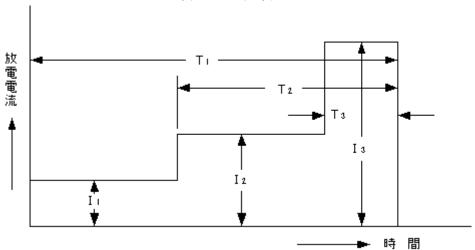
(4) 容量は、次式により算出すること。

$$C = \frac{1}{L} \left[ K_1 I_1 + K_2 (I_2 - I_1) + K_3 (I_3 - I_2) + \dots + K_n (I_n - I_{n-1}) \right] A h$$

C:定格放電率換算容量(Ah)

L:保守率

K: 放電時間T、蓄電池の最低温度及び許容できる最低電圧によって決められる容量換算時間(h)


I:放電電流(A)

1、2、3 … n: 放電電流の変化の順に番号を付したT、K、I で、次図の負荷特性の例による。

- (注1) 保守率「L」は、使用年数、使用条件の変化等により蓄電池 容量の変化を補償し、所定の負荷特性を満足するために用いる 係数で、L=0.8として計算すること。
- (注2) 容量換算時間「K」は、容量の放電率、使用温度、許容最低電圧(放電終止電圧)などによる変化に対し、所定の条件における要領に換算するための係数であり、図6-7により算出すること。ただし、各電池メーカーの作成している容量換算時間表による場合は、この限りでない。
  - 1 許容最低電圧は、負荷側機器から要求される最低電圧により定める。
  - 2 最低蓄電池温度は、「5℃」を標準とすること。
  - 3 放電時間「T」は、負荷特性により求めること。

なお、容量換算時間表の見方は、次によること。

蓄電池の負荷特性



#### 第6 燃料電池設備

燃料電池設備は規則第12条第1項第4号ニの規定によるほか、次による。

#### 1 機器

(1) 燃料電池設備回路に配電盤等を設ける場合は、第3.1.(2)のにより設けること。

#### 2 設置方法

- (1) 燃料電池設備の結線は、第5.2.(1)図の例によること。
- (2) 燃料電池設備の周囲には、別表6-2により保有距離をとること。
- (3) 燃料電池設備回路に配電盤等を設ける場合は、第3.2.(2)の例に より保有距離をとること。
- (4) 起動信号を発する検出器(不足電圧継電器等)は、低圧側の常用電源 回路に設けること。
- (5) 燃料電池設備を設置した室には、非常電源を付置した換気装置を設けること。
- (6) 消防用設備等の常用電源及び非常電源として使用する燃料電池設備の 設置方法は、(1)から(5)まで並びに第4.2.(7). ウからクまでの 例によるほか、次による。
  - ア 一般社団法人日本内燃力発電設備協会において、主燃料の安定供給 の確保に係る評価を受け、認められたものについては、燃料電池設備 の基準(平成18年消防庁告示第8号)第2第2号ただし書において準 用する同基準第2第1号(7)ロの規定に適合しているものとして取り 扱うものとする。
  - イ 燃料電池設備の基準第2第2号に規定する「非常電源用の燃料」を 設置する場合は第4.2.(7).イ.(ア)及び(イ)の例により設ける こと。

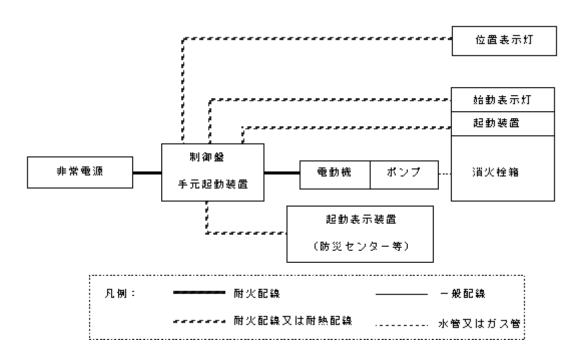
#### 3 出力算定

出力算定は第4.3の例によること。

#### 第7 非常電源回路等

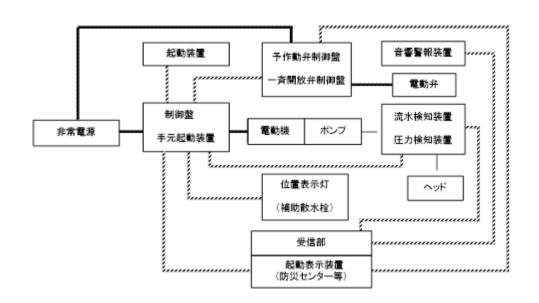
引込回路(引込線取付点から非常電源の専用区画等までの配線)、非常電源回路(非常電源の専用区画等から当該設備までの回路)、操作回路、警報回路及び表示灯回路等(以下「非常電源回路等」という。)の設置方法は、次による。

#### 1 設置方法

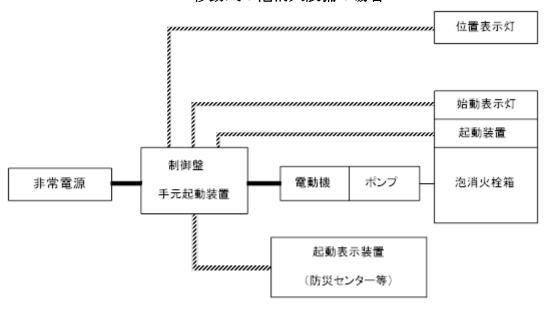

(1) 非常電源回路等の耐火配線及び耐熱配線は、別表6-6の例によること。ただし、引込回路について、地中に埋設した場合及び別棟、屋外、屋上又は屋側((おくそく) 建築物の屋外側面)で屋内消火栓設備の基準

(第3.3)に規定する場所その他不燃材料で区画された機械室等はこの限りでない。

(2) 非常電源回路等(引込回路を除く。)は、消防用設備等の種別に応じ、 次によること。

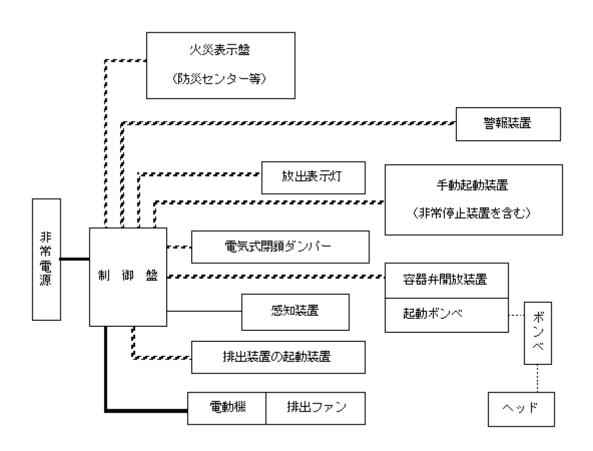

#### ア 屋内消火栓設備

屋内消火栓設備の非常電源回路等は、次図の例により非常電源から 電動機の入力端子までの部分を耐火配線、操作(起動)回路及び表示 灯回路等の部分を耐火配線又は耐熱配線とすること。




#### イ スプリンクラー設備

スプリンクラー設備の非常電源回路等は、次図の例により非常電源 から電動機の入力端子及び一斉開放弁の起動用に用いる電磁弁の入力 端子までを耐火配線、操作(起動)回路、警報回路及び表示灯回路等 の部分を耐火配線又は耐熱配線とすること。

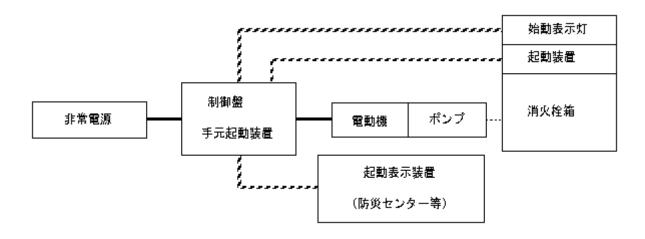



### 移動式の泡消火設備の場合



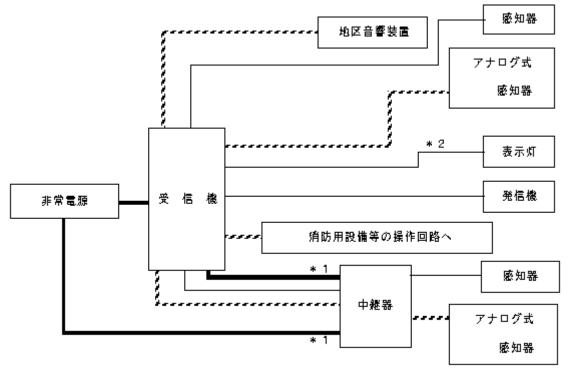
- ウ 水噴霧消火設備及び泡消火設備 イの例によるものとすること。
- エ 不活性ガス消火設備(移動式のものを除く。)

不活性ガス消火設備の非常電源回路等は、次図の例により非常電源 から制御盤の入力端子及び消火剤の排出に用いる電動機の入力端子ま でを耐火配線とし、操作(起動)回路、警報回路及び表示灯回路等並 びに電気式閉鎖ダンパー及びシヤッター閉鎖回路等の部分を耐火配線 又は耐熱配線とすること。




オ ハロゲン化物消火設備及び粉末消火設備(どちらも移動式のものを除く。)

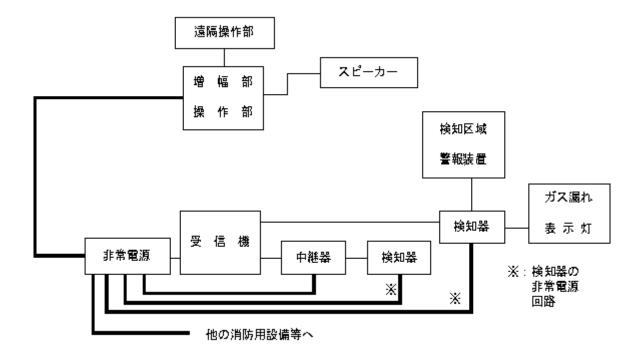
エの例によること。


#### カ 屋外消火栓設備

屋外消火栓設備の非常電源回路等は、次図の例により非常電源から 電動機の入力端子までの部分を耐火配線、操作(起動)回路及び表示 灯回路等の部分を耐火配線又は耐熱配線とすること。

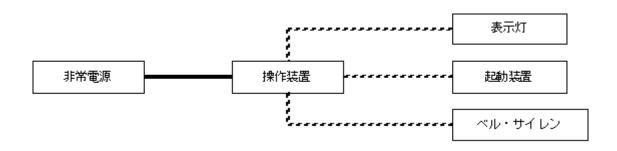


#### キ 自動火災報知設備


自動火災報知設備の非常電源回路等は、次図の例により非常電源か ら受信機の入力端子まで及び非常電源を必要とする中継器までを耐火 配線、地区音響装置回路及びアナログ式感知器回路を耐火配線又は耐 熱配線とすること。

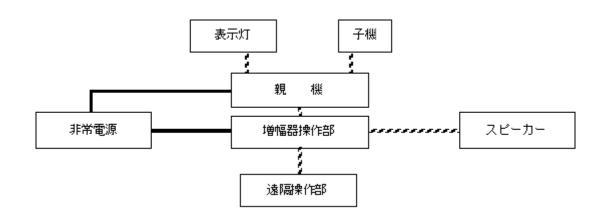


注\*1 中継器の非常電源回路 \*2 発信機を他の消防用設備等の起動装置とする場合、発信機上部表示灯の回路は、 非常電源付の耐熱配線とすること。


#### ク ガス漏れ火災警報設備

ガス漏れ火災警報設備の非常電源回路等は、非常電源を他の消防用設備等と共用する場合にあっては、次図の例により非常電源から受信機の入力端子まで並びに非常電源を必要とする検知器、中継器、増幅器及び操作部までの各回路を耐火配線とすること。




#### ケ 非常ベル及び自動式サイレン

非常ベル及び自動式サイレンの非常電源回路等は、次図の例により 非常電源から操作装置までを耐火配線、ベル、サイレン回路、操作回 路及び表示灯回路を耐火配線又は耐熱配線とすること。



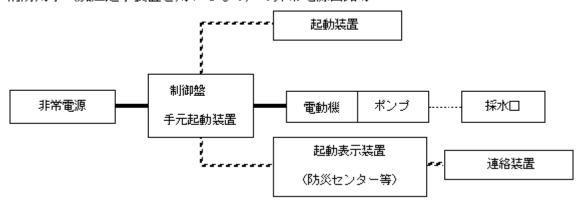
#### コ 放送設備

放送設備の非常電源回路等は、次図の例により非常電源から増幅器の入力端子及び親機の入力端子までを耐火配線、操作回路、スピーカー回路及び表示灯回路を耐火配線又は耐熱配線とすること。

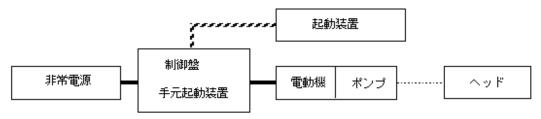


#### サ 誘導灯

誘導灯の非常電源回路等は、次図の例により非常電源から誘導灯の 入力端子までを耐火配線とすること。


誘導灯 (別置型) の非常電源回路等




シ 消防用水、連結散水設備及び連結送水管 (いずれも加圧送水装置を 設ける場合に限る。)

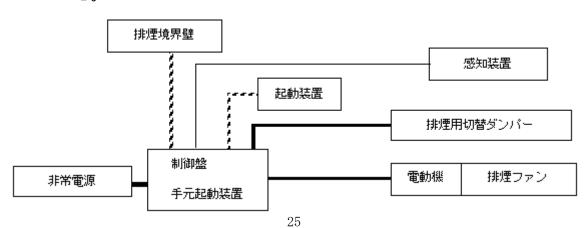
消防用水、連結散水設備及び連結送水管の非常電源回路等は、それぞれ次図の例により、非常電源から電動機の入力端子までを耐火配線、操作(起動)回路、表示灯回路及び連絡装置を耐火配線又は耐熱配線とすること。

消防用水(加圧送水装置を用いるもの)の非常電源回路等



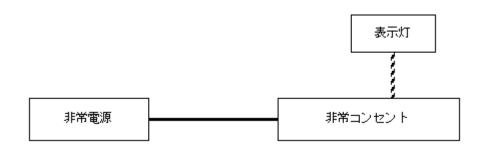
連結散水設備 (加圧送水装置を用いるもの)の非常電源回路等




散水ヘッドに閉鎖型スプリンクラーヘッドを用いるもののうち、加圧送水装置としてポンプ及び電動機を使用するもの

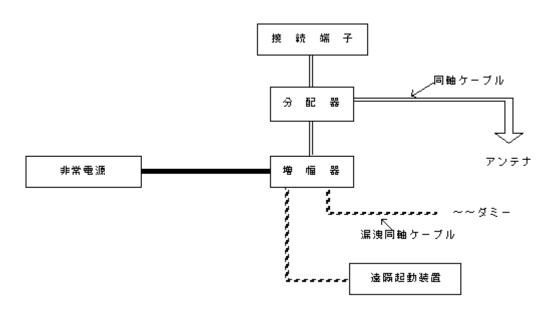
連結送水管 (加圧送水装置を用いるもの)の非常電源回路等




#### ス 排煙設備

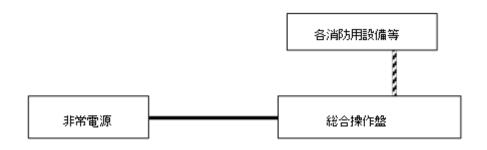
排煙設備の非常電源回路等は、次図の例により非常電源から電動機の入力端子及び排煙用切替えダンパーの入力端子までを耐火配線、操作(起動)回路及び連絡装置回路等を耐火配線又は耐熱配線とすること。




#### セ 非常コンセント設備

非常コンセント設備の非常電源回路等は、次図の例により非常電源 から非常コンセントまでを耐火配線、表示灯回路を耐火配線又は耐熱 配線とすること。



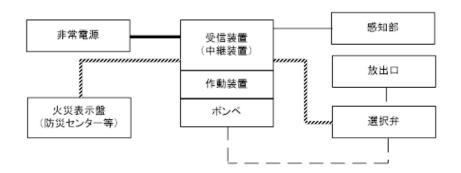

## ソ 無線通信補助設備(増幅器を設置する場合に限る。)

無線通信補助設備の非常電源回路等は、次図の例により非常電源から増幅器の入力端子までを耐火配線、操作回路を耐火配線又は耐熱配線とすること。



#### タ 総合操作盤

総合操作盤の非常電源回路等は、次図の例により非常電源から総合 操作盤までを耐火配線、各消防用設備等までを耐火配線又は耐熱配線 とすること。




#### チ 屋上緊急離着陸場等の夜間照明

屋上緊急離着陸場等の夜間照明の非常電源回路等は、次図の例により非常電源から屋上緊急離着陸場等の夜間照明までを耐火配線とすること。



- ※ 非常電源装置が屋上に設置されている場合は、耐火耐熱保護必要なし。
- ツ パッケージ型自動消火設備(主電源に電池を用いるものを除く。) パッケージ型自動消火設備の非常電源回路等は、次図の例により非 常電源から受信装置の入力端子までを耐火配線とし、操作(起動)回 路等の部分を耐火配線又は耐熱配線とすること。



#### 第8 特例基準

1 非常動力装置の設置による特例

床面積の合計が 2,000 平方メートル以下の防火対象物に、非常動力装置を 次により設ける場合には、令第 32 条の規定を適用し、屋内消火栓設備の加圧 送水装置の非常電源の代替とすることができる。

- (1) 非常動力装置は、自家発電設備の基準(昭和48年消防庁告示第1号) に適合するものであること。
- (2) 非常動力装置は、停電を確認したら自動的に起動するものであること。 ただし、運転及び保守の管理を行うことができる者がいて、かつ、停電 時において直ちに操作することができる場所に設けているものにあって は、手動式とすることができる。
- (3) 非常動力装置は、規則第12条第4号ロの規定に準じて設けること。
- (4) 非常動力装置を1時間以上駆動できるための換気設備及び操作のため の照明設備を設けた室に設けること。
- (5) 屋内消火栓設備の起動装置及び表示灯に対しては別途非常電源が必要であること。
- (6) 屋内消火栓設備の加圧装置の原動機は、電動機によるものとする。
- 2 不活性ガス消火設備及びハロゲン化物消火設備の排出装置に要する非常電源

不活性ガス消火設備及びハロゲン化物消火設備について、消火剤を安全な場所に排出するために設ける装置の非常電源は、次のいずれかに該当するものにあっては、非常電源専用受電設備とすることができる。

- (1) 特定防火対象物で延べ面積が 1,000 平方メートル未満のもの
- (2) 令別表第1(16)項イに掲げる防火対象物で延べ面積が1,000平方メートル以上のもののうち、規則第13条第1項第2号に規定する小規模特定用途複合防火対象物
- (3) 特定防火対象物以外のもの
- 3 令第19条第2項の規定により、一の建築物とみなされ屋外消火栓設備が設置される場合の非常電源

個々の棟において特定防火対象物の延べ面積が 1,000 平方メートル未満の ものについては、令第 32 条の規定を適用し、非常電源専用受電設備とするこ とができる。

#### 別表 6-1 第2

第5.3.(1)関係 消防用設備等その他と適応非常電源

|                      | 備等その他                                                     | 非常電源の種別                                                                       | 使用時間                 |  |  |
|----------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|--|--|
| 水噴霧消<br>泡消火設<br>屋外消火 | クラー設備<br>火設備<br>備<br>:<br>性設備                             | 非常電源専用受電設備(注1に掲<br>げる防火対象物は除く。)、自家発電<br>設備、蓄電池設備又は燃料電池設備                      | 30 分以上               |  |  |
| ハロゲン<br>粉末消火<br>く。)  | ス消火設備<br>化物消火設備<br>設備(移動式を除                               | 自家発電設備、蓄電池設備又は燃料電池設備                                                          | 60 分以上<br>(注 2)      |  |  |
| 非常警報                 | 報知設備<br>設備(非常ベル、<br>イレン、放送設備)                             | 非常電源専用受電設備(注1に掲<br>げる防火対象物は除く。)又は直交変<br>換装置を有しない蓄電池設備                         | 10 分以上<br>(注 3)      |  |  |
|                      | 火災警報設備                                                    | 直交変換装置を有する蓄電池設備、自家発電設備又は燃料電池設備<br>(注4)又は直交変換装置を有しな<br>い蓄電池設備                  | 10 分以上               |  |  |
| る                    | 肖防庁長官が定め<br>要件に該当する防<br>対象物 (注5) の避<br>コ等 (注6) に設置<br>るもの | 蓄電池設備と自家発電設備(蓄電<br>池設備の 20 分を超える作動時間の<br>部分に限る。)を併用するもの又は直<br>交変換装置を有しない蓄電池設備 | 60 分以上               |  |  |
| 7                    | その他のもの                                                    | 直交変換装置を有しない蓄電池設<br>備                                                          | 20 分以上               |  |  |
|                      | の加圧送水装置                                                   | 非常電源専用受電設備(注1に掲<br>げる防火対象物は除く。)、自家発電<br>設備、蓄電池設備又は燃料電池設備                      | 60 分以上               |  |  |
|                      | <br>設備の加圧送水装置<br> セント設備                                   | 非常電源専用受電設備(注1に掲<br>げる防火対象物は除く。)、自家発電<br>設備、蓄電池設備又は燃料電池設備                      | 30 分以上               |  |  |
| 連結送水                 | 管の加圧送水装置                                                  | 非常電源専用受電設備(注1に掲<br>げる防火対象物は除く。)、自家発電<br>設備、蓄電池設備又は燃料電池設備                      | 120 分以<br>上          |  |  |
| 無線通信                 | 補助設備                                                      | 非常電源専用受電設備(注1に掲<br>げる防火対象物は除く。)又は直交変<br>換装置を有しない蓄電池設備                         | 30 分以上               |  |  |
| 総合操作                 |                                                           | 非常電源専用受電設備(注1に掲げる防火対象物は除く。)、自家発電<br>設備、蓄電池設備又は燃料電池設備<br>(注7)                  | 120 分以<br>上          |  |  |
| 照明                   | 、離着陸場等の夜間<br>五種が 1,000 ㎡以上                                | 自家発電設備                                                                        | 240 分以<br>上<br>第9号に担 |  |  |

- 延面積が 1,000 ㎡以上の特定防火対象物 (規則第 13 条第1項第2号に規 定する小規模特定用途複合防火対象物以外のもの。)
- 警報回路にあっては10分以上
- 注3 放送設備の非常電話にあっては、2回線を同時に30分以上作動させるこ
- とができる容量以上 注4 2回線を1分間有効に作動させ、同時にその他の回線を1分間監視状態にすることができる容量以上の容量を有する予備電源又は直流変換装置を有しない蓄電池設備を設けているものに限る。
- 注5 平成11年消防庁告示第2号第4に掲げる防火対象物

注6 規則第28条の3第4項第10号かっこ書に掲げる避難口、廊下及び通路、 乗降場(地階にあるものに限る。)並びにこれに通ずる階段、傾斜路及び通 路並びに直通階段

注7 各消防用設備等の種別に応じた非常電源

別表6-2 (第3.2.(2)及び第6.2.(2)関係)

非常電源専用受電設備及び燃料電池設備の保有距離

| 保有距離を確保しなけ                           | ればならない部分         | 保有       | 距離          |           |                                                                                                        |
|--------------------------------------|------------------|----------|-------------|-----------|--------------------------------------------------------------------------------------------------------|
|                                      | 操作を行う面           |          | 相互に正        |           | ごし、操作を行う<br>5場合は、1.2m                                                                                  |
| 配電盤及び分電盤                             | 点検を行う面           | とな<br>限り | らない音<br>でない | 部分に       | ごし、点検に支障こついては、この                                                                                       |
|                                      | 換気口を有する面         |          | 2m以_        |           |                                                                                                        |
| 変圧器及びコンデンサー                          | <br>  点検を行う面<br> |          | 相互に正        |           | ごし、点検を行う  <br>5場合は、1.0m                                                                                |
|                                      | その他の面            | 0. 1     | lm以上        |           |                                                                                                        |
|                                      | 操作を行う面           | 屋        | 1.0m<br>以上  | 屋外        | 1. 0m以上、<br>ただし、 <b>隣接</b> す                                                                           |
|                                      | 点検を行う面           | 内に設      | 0.6m<br>以上  | 外又は       | る建築物又は                                                                                                 |
| キュービクル式非<br>常電源専用設備の周<br>囲           | 換気口を有する面         | 設ける場合    | 0. 2m<br>以上 | は屋上に設ける場合 | を造物防けはて保ずき不りの火て、あ有るの大な屋る距こめがはない場でといるである。とは、おりのとのでで、あれるでは、おりのとので、あれるにいいが、といいで、といいで、といいで、といいで、といいで、といいで、 |
| キュービクル式とこれ以外の変電設備、<br>発電設備及び蓄電池設備との間 |                  | 1. (     | m以上         |           |                                                                                                        |

別表 6-3 (第3.1.(1)及び(2)関係) 配電盤等の設置区分

|                                                                                  | 設置                                                | 場                                                                      | 所                                                                         |                                  | 配電盤等の種類               |
|----------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|-----------------------|
| 場合は屋根を設けた東屋外又は、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 | も)で区画され<br>7用の室<br>は主要構造部を<br>3建築物等から<br>そ電設備から 3 | 、かつ、窓<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | び天井(天井の<br>及び出入口に防<br>とした建築物の<br>い距離を有する<br>の囲の隣接する<br>つ、当該建築物<br>場合に限る。) | 上<br>是上<br>多<br>基<br>多<br>基<br>等 | 第1種<br>第2種<br>一般形(注1) |
| イラー室等                                                                            | 等火災の発生の                                           | おそれのあ                                                                  | (注2)、機械質<br>ある設備又は機<br>プ室その他これ                                            | と器が                              | 第1種<br>第2種            |
| 階 段                                                                              | 特                                                 | 一般階<br>避難階<br>別避難階段                                                    | 段                                                                         |                                  | 第1種<br>第1種<br>第2種     |
| 廊                                                                                |                                                   |                                                                        | 下                                                                         |                                  | 第1種                   |
| そ                                                                                |                                                   | の                                                                      | 他_                                                                        |                                  | 第1種                   |

- 注1 一般形配電盤等とは、第1種配電盤等及び第2種配電盤等以外の配電盤等 をいう。
- 注2 耐火構造の床又は壁で区画され、開口部には防火戸が設けられている電気室にあっては、JISC8480に適合する配電盤等のうち、一般形配電盤等とすることができる。
- 注3 建築基準法施行令第123条に規定する避難階段又は特別避難階段をいう。

## 別表6-4 (第4.2.(2)関係)

## 自家発電設備の保有距離

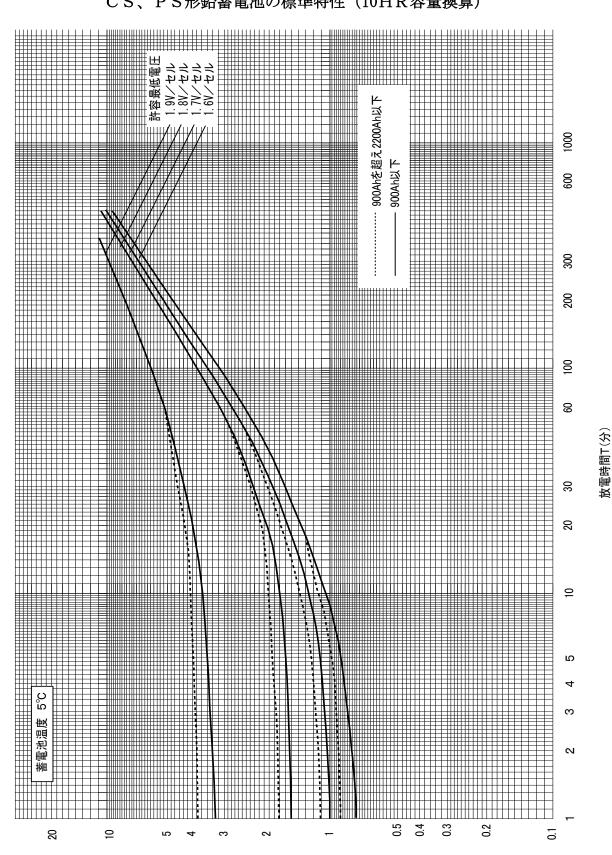
| 保有距離を確保し                              | なければならない部分 | 保有距離             |
|---------------------------------------|------------|------------------|
| 発電機及び                                 | 相互間        | 1. 0m以上          |
| 原動機本体                                 | 周囲         | 0.6m以上           |
| , , , , , , , , , , , , , , , , , , , | 操作を行う面     | 1. 0m以上          |
|                                       |            | 0.6m以上。ただし、点検に支  |
| 操作盤                                   | 点検を行う面     | 障とならない部分についてはこの  |
|                                       |            | 限りでない。           |
|                                       | 換気口を有する面   | 0. 2m以上          |
| 燃料槽と原動機                               | 燃料、潤滑油、冷却水 | 2.0m以上。ただし、不燃材料  |
| との間(燃料搭                               | 等を予熱する方式の原 | で有効に遮へいした場合は、0.6 |
| 載形を除く。)                               | 動機         | m以上              |
| 戦心で防へ。)                               | その他のもの     | 0. 6m以上          |
| キュービクル式                               | 操作を行う面     | 1. 0m以上          |
| 自家発電設備                                | 点検を行う面     | 0. 6m以上          |
| 口外兀电队佣                                | 換気口を有する面   | 0. 2m以上          |

## 別表6-5 (第5.2.(2)関係)

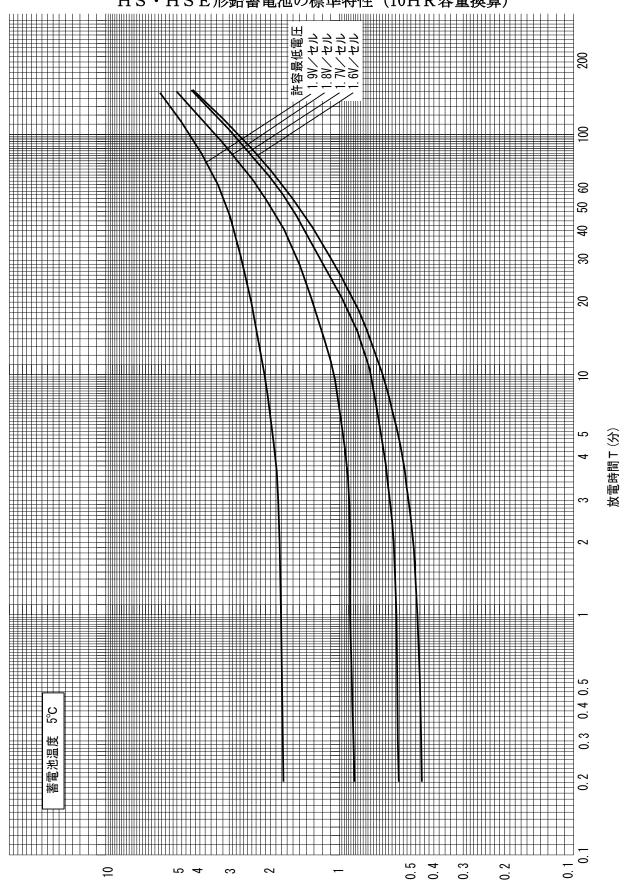
## 蓄電池設備の保有距離

| 保有距離を | 確保しなければならない部分 | 保 有 距 離          |
|-------|---------------|------------------|
|       | 操作を行う面        | 1. 0m以上          |
| 充電装置  | 点検を行う面        | 0.6m以上           |
|       | 換気口を有する面      | 0. 2m以上          |
|       | 点検を行う面        | 0.6m以上           |
|       |               | 0.6m以上(架台等に設ける   |
|       | 動の相互間<br>電池   | 場合で蓄電池の上端の高さが床   |
| 蓄電池   |               | 面から 1.6mを超えるものにあ |
|       |               | っては、1.0m以上)      |
|       | その他の面         | 0. 1m以上ただし、電槽相互間 |
|       | ての個の画         | は除く。             |
| キュービク | 操作を行う面        | 1. 0m以上          |
| ル式蓄電池 | 点検を行う面        | 0.6m以上           |
| 設備    | 換気口を有する面      | 0. 2m以上          |

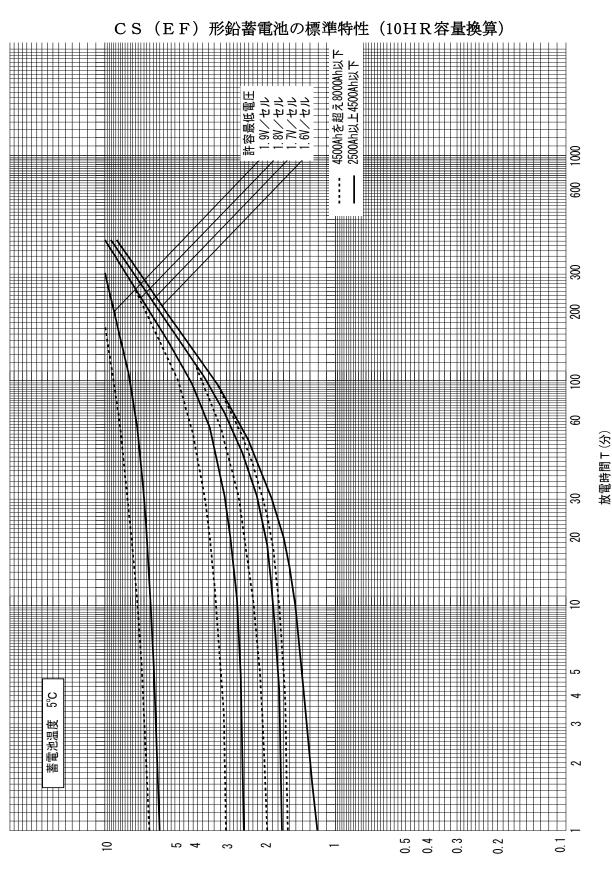
別表6-6 (第7.1.(1)関係) 左欄の区分、A欄の電線等の種類及びB欄の工事種別によりC欄の施工方法 によること。


| 区        | A欄            | B欄          | C欄                       |
|----------|---------------|-------------|--------------------------|
| 分        | 電線等の種類        | 工事種別        | 施設方法                     |
| 耐        | (1) アルミ被ケーブル  | (1) 金属管工事   | (1) 耐火構造とした主要構造部に埋設      |
| 火<br>  配 | (2) 鋼帯がい装ケーブ  | (2) 2種金属製可と | する。この場合の埋設深さは壁体等         |
| 配線       | ル             | う電線管工事      | の表面から20mm 以上とする。         |
|          | (3) クロロプレン外装  | (3) 合成樹脂管工事 | (2) 1時間耐火以上の耐火被覆材又は      |
|          | ケーブル          | (C欄の(1)によ   | 耐火被覆で覆う。                 |
|          | (4) 鉛被ケーブル    | り施設する場合に    | (3) ラス金網を巻き、モルタル20mm 以   |
|          | (5) 架橋ポリエチレン  | 限る。)        | 上塗る。                     |
|          | 絶縁ビニルシースケ     |             | (4) A欄の(1)~(5)までのケーブルを使  |
|          | ーブル (CV)      |             | 用し、けい酸カルシウム保温筒           |
|          | (6) 600ボルト架橋ポ |             | 25mm 以上に石綿クロスを巻く。        |
|          | リエチレン絶縁電線     |             | (5) 耐火性能を有するパイプシャフト      |
|          | (IC)          |             | (ピット等を含む。) に隠蔽する。        |
|          | (7) 600ボルト2種ビ |             |                          |
|          | ニル絶縁電線(HI     | (4) 金属ダクト工事 | (2)、(3)又は(5)により施設する。     |
|          | V)            |             |                          |
|          | (8) ハイパロン絶縁電  | (5) ケーブル工事  | A欄の(1)から(5)までのケーブルを使     |
|          | 線             |             | 用し、耐火性能を有するパイプシャフト       |
|          | (9) 四ふっ化エチレン  |             | (ピット等を含む。) に施設するほか、      |
|          | (テフロン)絶縁電     |             | 他の電線との間に不燃性隔壁を堅固に        |
|          | 線             |             | 取付け又は15cm以上の離隔を常時保持      |
|          | (10) シリコンゴム絶  |             | できるように施設する。              |
|          | 縁電線           |             |                          |
|          | (11) バスダクト    | (6) バスダクト工事 | 1時間耐火以上の耐火被覆板で覆う。        |
|          |               |             | ただし、耐火性を有するもの及び(5)に設     |
|          |               |             | けるものは除く(注5)。             |
|          | (12) 耐火電 電 線  | (5)のケーブル工事  | B欄の(1)、(2)、(3)又は(4)で保護する |
|          | 線(注1) 管 用     |             | こともできる。                  |
|          | 0 も           |             |                          |
|          | 0             |             |                          |
|          | その            | (5)のケーブル工事  | 露出又はシャフト、天井裏等に隠蔽す        |

|      | 他の             |                 | る。                 |
|------|----------------|-----------------|--------------------|
|      | <b>5</b> 0     |                 |                    |
|      | (13) M I ケーブル  | (5)のケーブル工事      |                    |
| 耐    | (1)から(10)までの電線 | (1)、(2)又は(4)の工事 |                    |
| 耐熱配線 | 等              |                 |                    |
| 線    | (1)から(5)までの電線等 | (5)のケーブル工事      | 不燃性のダクト、耐火性能を有するパ  |
|      |                |                 | イプシャフト(ピット等を含む。)に隠 |
|      |                |                 | 蔽する。               |
|      | (14) 耐熱電線 (注2) | (5)のケーブル工事      |                    |
|      | (15) 耐熱光ファイバ   |                 |                    |
|      | ケーブル(注3)       |                 |                    |
|      | (16) 耐熱形同軸ケー   |                 |                    |
|      | ブル (注4)        |                 |                    |
|      | (17) 耐熱形漏えい同   |                 |                    |
|      | 軸ケーブル(注4)      |                 |                    |

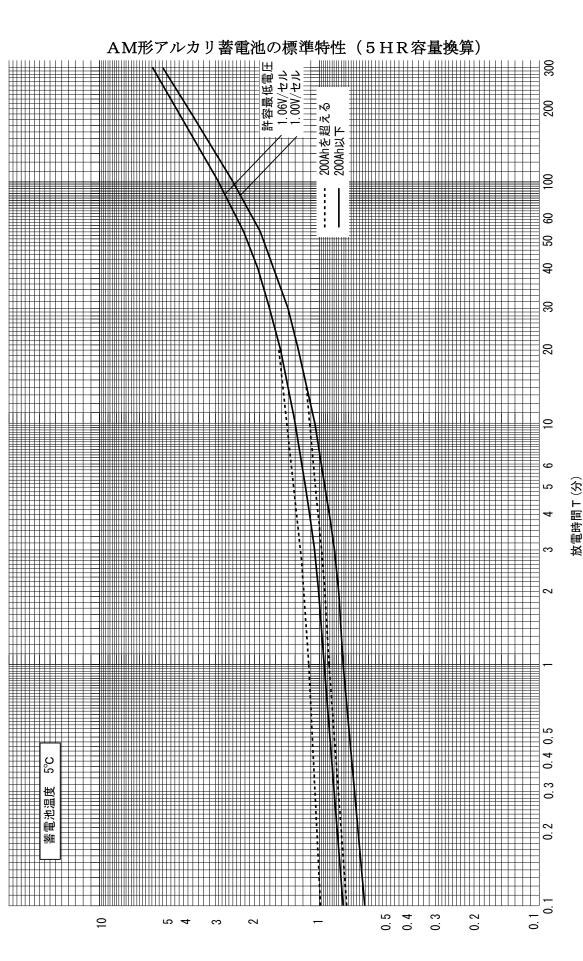

- 注1 耐火電線は、耐火電線の基準(平成9年消防庁告示第10号)に適合する ものであること。
- 注2 耐熱電線は、耐熱電線の基準(平成9年消防庁告示第11号)に適合する ものであること。なお、小勢力回路(弱電流電気)用のものは電源回路に は使用できないものであること。
- 注3 耐熱光ファイバケーブルは、「耐熱光ファイバケーブルの基準」(「光ファイバケーブルの耐熱性能等について」(昭和61年12月12日付け消防予第178号。消防庁予防救急課長通知)中別添に示すものをいう。)に適合するものであること。なお、一般財団法人電線総合技術センターの評定を受けたものについては、当該基準に適合するものとして取り扱って差し支えないこと。
- 注4 耐熱形同軸ケーブル及び耐熱形漏えい同軸ケーブルは、無線通信補助設備の基準(別記2「耐熱形漏えい同軸ケーブル、耐熱形同軸ケーブル及び耐熱形空中線の性能及び材質」)に適合するものであること。なお、一般財団法人電線総合技術センターの評定を受けたものについては、当該基準に適合するものとして取り扱って差し支えないこと。
- 注5 耐火性を有するバスダクトは、耐火電線の基準に適合するものであること。

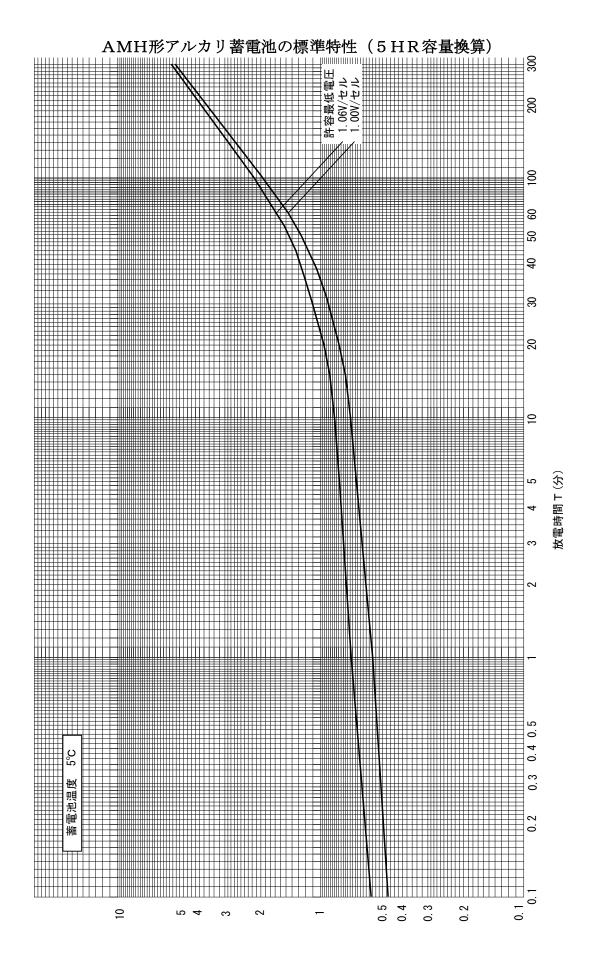
#### 蓄電池の標準特性


#### CS、PS形鉛蓄電池の標準特性(10HR容量換算)

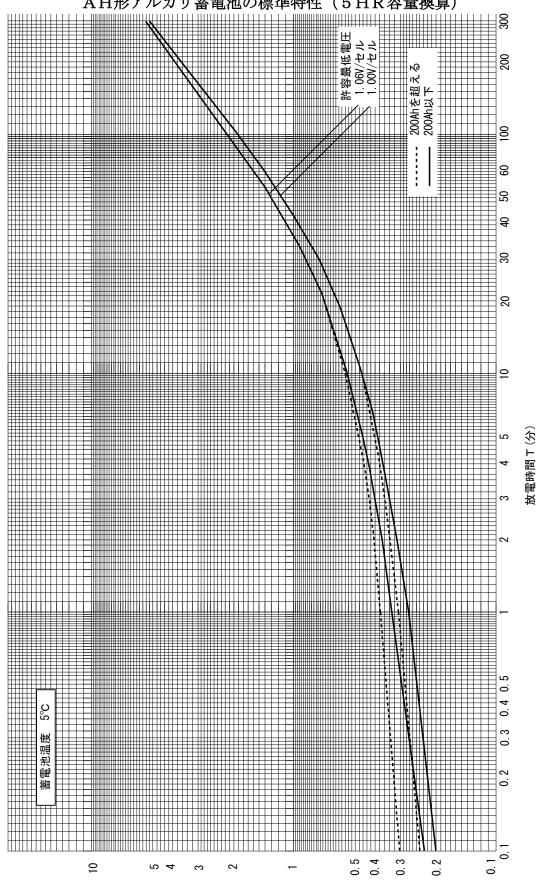



HS・HSE形鉛蓄電池の標準特性(10HR容量換算)





CS(EF)形鉛蓄電池の標準特性(10HR容量換算)




容量換算時間 化(時)











#### AHH形アルカリ蓄電池の標準特性(1HR容量換算)



#### 負荷出力合計(K)の算出方法

1 負荷出力合計(K)

負荷出力とは、非常電源を必要とする消防用設備等の機器(自家発電設備の負荷として接続する機器をいう。)の定格出力をいい、これらの出力の総和を負荷出力合計(以下「K値」という。)とする。

- 2 K値の算出方法
  - (1) K値

K値は、次の式により求めること

$$K = \sum_{i=1}^{n} mi$$

mi:個々の負荷機器の出力(kW)

n : 負荷機器の個数

(2) 出力

出力(mi)は、個々の負荷機器の定格表示に応じて次により求めること。

ア 定格が出力(kW)で表示されている機器の場合(一般誘導電動機等)

- (ア) 一般電動機(誘導機)の場合 mi=定格出力(kW)
- (イ) 非常用昇降機の場合

$$mi = \frac{U \ v}{n} \cdot \sum_{i=1}^{n} E vi \cdot Vi$$

Uv :昇降機の台数による換算係数

別記6.1.(4)に示すUvの値を用いる。

n :昇降機の台数

Evi:昇降機の制御方式によって定まる換算係数

通常の場合は、別記6.1.(1)に示すEVの値を用い

る。

Vi:昇降機巻上電動機の定格出力(kW)

(ウ) 充電装置の場合

 $mi = V \cdot A$ 

V:直流側の定格電圧(均等)(V)

A:直流側の定格電流(A)

(エ) 白熱灯・蛍光灯の場合

mi=定格消費電力(定格ランプ電力)(kW) 白熱灯は定格消費電力、蛍光灯は定格ランプ電力とする。

(オ) 差込負荷の場合

mi = Li (kW)

Li: 非常コンセント (単相) の定格電圧 (k V) ×定格電流 (A) 通常は 0.1kV、15Aとする。

イ 定格出力(kVA)で表示されている機器の場合

(CVCF、充電装置等)

 $mi = Ci \cdot \cos \theta i$ 

Ci : 定格出力(k V A)

cos θ i:負荷の力率(定格値)

通常の場合は、別記 6. 1. (1)に示す力率の値を用いることができる。

ウ その他の機器の場合

効率 ( $\eta$  Li) が 0.85 より著しく小さい機器の場合は、次式によること。

 $mi = \frac{\eta L}{n Li} \cdot Ki$ 

n L : 負荷の総合効率 (0.85)

η Li:当該負荷の定格効率

Ki: 負荷出力(kW)

3 負荷出力合計 (K値) の算出手順

負荷出力合計(K値)の算出方法は、前述のとおりであるが、その具体的 算出に当たっては、様式1に示す計算シートを用いるものであること。

なお、計算シートを用いた算出の手順は、次によることとし、各算出式に 用いる係数等については、別記6の諸元表によること。

(1) 負荷表の作成

消防用設備等の負荷機器を選定し、様式2「自家発電設備の出力計算シート負荷表」(以下「負荷表」という。) に所定の事項を記入する。

(2) ①件名

防火対象物の名称等を記入する。

(3) ②機器番号

負荷機器番号等を記入する。

(4) ③負荷名称

負荷機器名称を記入する。

#### (5) 負荷出力合計の算出

#### ア ④台数

負荷機器台数を記入する。

イ ⑤換算を必要とする負荷機器の入力又は出力(kW、kVA) 換算を必要とする負荷機器の入力又は出力(kW、kVA)を記入 する。

該当機器:昇降機、CVCFにつきその定格値を記入する。

ウ ⑥出力換算係数

昇降機等の出力換算を必要とする負荷機器につき、別記 6.1.(1) に示す値を記入する。

#### エ ⑦出力

負荷機器の出力を記入する。

また、換算を必要とする負荷機器については、当該負荷機器容量と 出力換算係数(Ev等)の積を出力の欄に記入する。

なお、複数台の機器(昇降機を除く。)が同時始動するときはその出力の合計値を記入する。また、昇降機が複数台ある場合は、2.(2). ア.(イ)で求めた値を記入する。

オ ⑧負荷出力合計値(K値)の算出

⑦の総和を求め、 $K = \Sigma mi = 8$  に記入する。

#### (6) M2の選定

ア 9始動方式又は制御方式

誘導電動機にあっては始動方式を、昇降機にあっては制御方式を記 入する。

# 

当該負荷機器のRG2用の $\frac{ks}{Z'm}$ の値を別記 6.1.(3) より求め記入する。

また、昇降機が複数台ある場合又は複数台の機器が同時始動する場合は、様式2-2で求めたRG2用の値を記入する。

# 

⑦×⑩の値を求め記入する。

#### エ ⑫M2の選定

①の値が最大となる⑦の mi を、mi=M2=② に記入する。

#### (7) M3の選定

## $\mathcal{T}$ $\mathfrak{B}^{\frac{\mathbf{k}\mathbf{s}}{\mathbf{z}'\mathbf{m}}}$

当該負荷機器のRG3用の <sup>ks</sup> で加 の値を別記6.1.(3)より求め記入する。

また、昇降機が複数台ある場合又は複数台の機器が同時始動する場合は、様式2-2で求めたRG3用の値を記入する。

# √ (3) $\frac{\text{ks}}{\text{Z'm}}$ -1.47

(3-1.47の値を求め記入する。)

$$\dot{\mathcal{D}} \quad \textcircled{4} \left( \frac{\text{ks}}{\text{Z'm}} - 1.47 \right) \cdot \text{mi}$$

⑦×⑬の値を求め記入する。

エ 15M3の選定

⑭の値が最大となる⑦の mi を、mi=M3=⑮ に記入する。

#### (8) M2'選定

# $\mathcal{T} = \widehat{\mathbf{I}} \frac{\mathbf{k}\mathbf{s}}{\mathbf{z}'\mathbf{m}} \cos \theta \mathbf{s}$

当該負荷機器のRE2用の $\frac{ks}{Z'm}\cos\theta$ sの値を別記6.1.(3)より求め記入する。

また、昇降機が複数台ある場合又は複数台の機器が同時始動する場合は、様式2-2で求めたRE2用の値を記入する。

# $\sqrt{8 \frac{ks}{Z'm}} \cos \theta s \cdot mi$

⑦×⑪の値を求め記入する。

ウ <sup>19</sup>M2'の選定

⑱の値が最大となる⑦の mi を、mi = M2' = ⑲ に記入する。

#### (9) M3'の選定

# $\mathcal{T} = \underbrace{\frac{ks}{Z'm}\cos\theta}_{}$ s

RE3用の $\frac{ks}{Z_m}\cos\theta$ sの値を別記6.1.(3)より求め記入する。

また、昇降機が複数台ある場合又は複数台の機器が同時始動する場合は、様式2-2で求めたRE3用の値を記入する。

- $\sqrt{20} \frac{\mathrm{ks}}{\mathrm{Z'm}} \cos \theta \, \mathrm{s} 1$ 
  - 段─1の値を求め記入する。
- ウ  $\mathbb{Q}\left(\frac{ks}{Z'm}\cos\theta s-1\right)$ ・mi
  - ⑦×20の値を求め記入する。
- エ 22M3'の選定

②の値が最大となる⑦の mi を、mi=M3'=② に記入する。

- (10) 高調波発生負荷出力合計の算出
  - ア ②高調波発生負荷(Ri(kW))

負荷機器のうち充電装置、CVCF等の整流器使用負荷機器について、⑦の値を②に記入する。昇降機にあっては、巻上電動機の出力⑤の値を②に記入する。

- イ ②ΣRi=Rの算出
  - $\mathfrak{Q}$ の総和を求め、 $\Sigma Ri = R = \mathfrak{Q}$  に記入する。
- (11) 不平衡負荷の算出
  - ア 25不平衡負荷

単相負荷の負荷機器出力を@の該当欄に記入するとともに、R-S 負荷の合計を@に、S-T 負荷の合計を@に、T-R 負荷の合計を@に 記入する。

- イ 最大値等の選出

Ш 田 計算書 No.  $\min_{-1}^{-1}$  $\frac{1}{\text{min}^{-1}}$ 無 訟 揪 定格回転数 定格回転数 ∢□ 絥 算書 洲 kVAk W Ш 七計 丑 乖 原動機の種別 発電設 定格出力 定格電圧 定格力率 定格出力 使用燃料 原動機出力 発電機出力 谷 柘 容 形式番号 凞 牡 種 41 出 愆 **※** (4)  $\exists$ (5) # (3) 松 艸 Ш 缈 켚  $xd'g = \Delta E = \Delta E$  $KG_3 =$ KG4 =a ||  $= \bigcirc$ <u>р</u> 3 || |- $\eta$  g / C p= 様式2の通り 発電機 特性 原動機 特性 対象負荷機器 負荷機器 様式1 (1) (4) (2) (3)

様 式 2

|                    |           | 拒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-R                                                                                                                                                                                                      |  |  |  |  |  |  |  |          |                                                |                                                                                  |
|--------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|----------|------------------------------------------------|----------------------------------------------------------------------------------|
|                    |           | 不平衡負荷<br>(kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S-T T                                                                                                                                                                                                    |  |  |  |  |  |  |  |          | : A29                                          | : (31)                                                                           |
|                    | (25)      | K<br>計立                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R-S                                                                                                                                                                                                      |  |  |  |  |  |  |  | 80       | 最大値: A29[<br>次の値: B30]                         | 最小値: (3]                                                                         |
|                    | @         | 高調液                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                          |  |  |  |  |  |  |  |          | ΣRi=R                                          |                                                                                  |
|                    | (23)      | 恒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mi 形 i                                                                                                                                                                                                   |  |  |  |  |  |  |  | (2)      | M                                              |                                                                                  |
|                    | 迅         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left(\frac{kS}{Z^{\prime m}}\cos^{6s-1}\right)$ · mi $R_{1}(kW)$                                                                                                                                       |  |  |  |  |  |  |  |          | 直が                                             |                                                                                  |
|                    | 騰         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |  |  |  |  |  |  |  |          | <u>ks</u> cos θs-1 <b>)·</b> mi の値が<br>最大となるmi |                                                                                  |
|                    | 6         | $\begin{array}{c c} & & & \\ & & & \\ \hline \begin{array}{c} & & & \\ & & \\ \hline \begin{array}{c} & & \\ & \\ \hline \end{array} \end{array} \\ \begin{array}{c} & & \\ & \\ \hline \end{array} \\ \begin{array}{c} & & \\ & \\ \hline \end{array} \\ \begin{array}{c} & \\ & \\ \hline \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \\ \begin{array}{c} & \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} & \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} & \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c}$ |                                                                                                                                                                                                          |  |  |  |  |  |  |  |          | (ks cos θ s - 1)・1<br>最大となるmi<br>最大となるmi       | $\text{mi} = \text{M}_{\text{3}} =$                                              |
|                    | M .       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s Z ks                                                                                                                                                                                                   |  |  |  |  |  |  |  |          | (ks<br>Z <sup>m</sup> °<br>最大                  | mi                                                                               |
|                    |           | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{ks}{Z^m}\cos\theta$                                                                                                                                                                               |  |  |  |  |  |  |  | (Z)      |                                                |                                                                                  |
|                    | ħs I      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | θs·mi                                                                                                                                                                                                    |  |  |  |  |  |  |  |          | 6 7 2                                          |                                                                                  |
|                    | M₂゚の選定    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ks cos                                                                                                                                                                                                   |  |  |  |  |  |  |  |          | ks<br>Z'm<br>値が最大となる<br>mi                     | $I_{z}\dot{=}oxed{f I}$                                                          |
|                    | $M_{z}$   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S cos θ s                                                                                                                                                                                                |  |  |  |  |  |  |  | (E)      | ks cos θ s·mi の<br>Z'm<br>値が最大となる              | $\mathrm{mi}=\mathrm{M}_{z}\dot{=}ig[$                                           |
|                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ا mi                                                                                                                                                                                                     |  |  |  |  |  |  |  |          |                                                |                                                                                  |
|                    | 知         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{k_{\rm S}-1.47}{Z^{\rm m}-1.47} \left(\frac{k_{\rm S}-1.47}{Z^{\rm m}}\right) \cdot {\rm mij} \frac{k_{\rm S}}{Z^{\rm m}} \cos \theta s \frac{k_{\rm S}}{Z^{\rm m}} \cos \theta s \cdot {\rm mi}$ |  |  |  |  |  |  |  |          | ks - ı. 47                                     |                                                                                  |
| 格                  | (多)       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1. 47 (5                                                                                                                                                                                                |  |  |  |  |  |  |  |          | 47 <b>)・1</b> 1<br>トとな                         | $\mathtt{mi} = \mathrm{M_3} = \! \big[$                                          |
| 華                  | M 3 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 (3=(3)-1.47                                                                                                                                                                                            |  |  |  |  |  |  |  | (15)     | ( <mark>ks</mark> -1.<br>次最力                   | mi ==                                                                            |
| #                  | fu)       | i ks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                          |  |  |  |  |  |  |  | (1)      |                                                |                                                                                  |
|                    | $M_2$ の選定 | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ks<br>Z'm mi                                                                                                                                                                                             |  |  |  |  |  |  |  |          | ks・miの値<br>Z <sup>m</sup> miの値<br>が最大となる<br>mi | $\begin{array}{c} \text{mi} = M_{\scriptscriptstyle 2} \\ = \boxed{ \end{array}$ |
| ıi×<br>100 m×      | W         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ks Z m                                                                                                                                                                                                   |  |  |  |  |  |  |  | (12)     | ks<br>Z <sup>n</sup> m<br>公場                   | i=                                                                               |
| 負荷雪                | <u></u>   | 名大 p<br>製式 z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (制力<br> <br> <br> <br>                                                                                                                                                                                   |  |  |  |  |  |  |  |          |                                                |                                                                                  |
| <u>-</u>           | (b)       | <u>1</u><br>出力<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c (kW                                                                                                                                                                                                    |  |  |  |  |  |  |  |          | 値 K                                            |                                                                                  |
| ,                  | 9         | 田福                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 英 海                                                                                                                                                                                                      |  |  |  |  |  |  |  |          | 石                                              |                                                                                  |
| 力計算                |           | 草 hr<br>をする<br>必ろけ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (kW, kVA) 係数 (kW) 方式 2m z                                                                                                                                                                                |  |  |  |  |  |  |  |          | 負荷出力合計値K                                       | C mi =                                                                           |
| 自家発電設備出力計算シート(負荷表) | (0)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>×</u><br>√⊞[₹                                                                                                                                                                                         |  |  |  |  |  |  |  |          | <b>A</b>                                       | $K=\Sigma$ mi $=$                                                                |
| 雪談                 | 4         | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ī Ā                                                                                                                                                                                                      |  |  |  |  |  |  |  | <u>®</u> |                                                |                                                                                  |
| 当家条                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>€</b><br>₹                                                                                                                                                                                            |  |  |  |  |  |  |  |          | 計 定                                            |                                                                                  |
|                    | (m)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E<br>E                                                                                                                                                                                                   |  |  |  |  |  |  |  |          | 選                                              |                                                                                  |
|                    | (2)       | 黎器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 梅                                                                                                                                                                                                        |  |  |  |  |  |  |  |          | 合 及                                            |                                                                                  |

1. 誘導電動機の始動方式で、Lはラインスタート、YはY-△始動、Rはリアクトル始動、Cはコンドルファ始動、SCは特殊コンドルファ始動、VCは連続電圧制御 始動を示す。 2. 制御方式で、THは直流サイリスタレオナード方式、MGは直流M-G方式、F Bは交流帰還方式、V Fは交流VVVF方式、OYは油圧制御方式を示す。 備考

様式2-2

|             | 東盟海                                                 | 発生負荷  | R i (kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  | ΣRi=R<br>=                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 值           | 4                                                   | RE3用  | $ \begin{array}{c c} \hline (7) & & & \\ \hline (8) & & \\ \hline (7) & & \\ \hline (7) & & \\ \hline (1) & & \\ \hline (2) & & \\ \hline (3) & & \\ \hline (4) & & \\ \hline (5) & & \\ \hline (6) & & \\ \hline (7) & & \\ \hline (7) & & \\ \hline (8) & & \\ \hline (9) & & \\ \hline (10) & & $ |  |  |  |  |  |                                                       | $\frac{\frac{1}{Z'_{\text{lip}}} = \frac{1}{M_p} \sum \mathcal{I}$ $= \frac{1}{1} \times \boxed{\qquad}$ $= \frac{1}{1} \times \boxed{\qquad}$ $= \frac{1}{2} \times \boxed{\qquad}$ $= \frac{1}{2} \times \boxed{\qquad}$ $= \frac{1}{2} \times \boxed{\qquad}$ $= \frac{1}{2} \times \boxed{\qquad}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 動                                                   | RG3用  | ni ks ks mi ks Z m Z m Z m Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  | $\Sigma 6 =$                                          | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ |
| 類           | 松                                                   | R E2用 | $ \begin{array}{c cccc}  & & & & & \\ \hline  & $            |  |  |  |  |  |                                                       | $\frac{1}{Z'_{\text{inp}}} = \frac{1}{M_{\text{p}}} \cdot \Sigma \hat{A}$ $= \frac{1}{1} \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 件名          |                                                     | R G2用 | ks ks ks mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  | Σ9=                                                   | $\begin{array}{c} \frac{1}{Z' \operatorname{inp}} = \frac{1}{Mp} \cdot \mathfrak{D} \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (同時始動計算用) 計 | 始動瞬時                                                |       | $ \begin{array}{c c} (2) & (3) \\ ks & ks & ks & ks \cos\theta \\ \overline{Z} \text{ m} & \overline{Z} \text{ m} & \overline{Z} \text{ m} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  | $\Sigma 2 = \boxed{\qquad \Sigma 3 = \boxed{\qquad}}$ | $Z_{\text{inp}} = \frac{1}{M_{\text{p}}} \Sigma \mathbb{Z}$ $= \frac{1}{1} \times \mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 梅椒          | 換算を必   田力田力   制   画   画   画   画   画   画   画   画   画 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  | $\square$ =(I) $\overline{\Lambda}$ =M                | Mp =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37          | 鮾                                                   | 嘂     | 海 中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  | 兼計                                                    | 選                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

2. RGs: Z̄mp は、 $\Sigma$ ②と $\Sigma$ ⑤を比較し、大きい値の方 $\sigma$ Z̄mp とする。 4. REs: Z̄mp は、 $\Sigma$ ②と $\Sigma$ ⑦を比較し、大きい値の方 $\sigma$ Z̄mp とする。 1. RG2.Zmpは、 $\Sigma$ ②と $\Sigma$ ③を比較し、大きい値の方のZmp とする。 3. RE2.Zmpは、 $\Sigma$ ③と $\Sigma$ ④を比較し、大きい値の方のZmp とする。

6. RE $_3$ cosθap は、 $\Sigma$  ③と $\Sigma$  ⑧を比較し、大きい値の方のsebp とする。 RE 2:cos6sp は、Σ③とΣ⑤を比較し、大きい値の方のco8sp とする。

備考

誘導電動機の始動方式で、Lはラインスタート、YはY-△始動、Rはリアクトル始動、Cはコンドルファ始動、SCは特殊コンドルファ始動、VCは 連続電圧制御始動を示す。 5.

制御方式で、THは直流サイリスタレオナード方式、MGは直流M-G方式、FBは交流帰還方式、VFは交流VVVF方式、OYは油圧制御方式を示す。

#### 発電機出力係数(RG)の算出方法

1 定常負荷出力係数(RG1)

 $RG1=1.47D \cdot Sf$ 

D : 負荷の需要率

Sf: 不平衡負荷による線電流の増加係数

 $Sf = 1 + 0.6 \frac{\Delta P}{K}$ 

ΔP: 単相負荷不平衡分合計出力値(kW)

三相各線間に単相負荷A、B及びC出力値(kW)があり、A≥B≥

Cの場合、 $\Delta P = A + B - 2C$ 

K:負荷の出力合計(kW)

注:この式を使用する場合は、ΔP/K≦0.3であること。

 $\Delta P/K>0$ . 3の場合は、別記3によりSfを求めること。

2 許容電圧降下出力係数 (RG2)

$$R G_2 = \frac{1 - \Delta}{\Delta} \frac{E}{E} \cdot xd' g \cdot \frac{ks}{Z'm} \cdot \frac{M_2}{K}$$

ΔE:発電機端許容電圧降下 (PU (自己容量ベース))

Xd'g:負荷投入時における電圧降下を評価したインピーダンス

Ks:負荷の始動方式による係数

Z'm:負荷の始動時インピーダンス (PU)

M2:始動時の電圧降下が最大となる負荷機器の出力(kW)

すべての始動入力 $\left(\frac{\mathbf{k}\mathbf{s}}{\mathbf{z}'\mathbf{m}}\cdot\mathbf{m}\right)$ の値を計算して、その値が最大となる  $\mathbf{m}\mathbf{i}$  を $\mathbf{M}\mathbf{2}$ 

とする。

K:負荷の出力合計(kW)

3 短時間過電流耐力出力係数 (RG3)

R G<sub>3</sub>=
$$\frac{fv_1}{K G_3}$$
 $\left\{1.47d+\left(\frac{ks}{Z'm}-1.47d\right)\frac{M_3}{K}\right\}$ 

fv1 : 瞬時周波数低下、電圧降下による負荷投入減少係数

別記6.2-1による。

KG3:発電機の短時間(⑮秒)過電流耐力(PU)

別記6.2による。

d : 別記6.1.(2)によるベース負荷の需要率

Ks:負荷の始動方式による係数

Z'm: 負荷の始動時インピーダンス (PU)

M3 : 短時間過電流耐力を最大とする負荷機器の出力(kW)

すべての(始動入力(kVA)-定格入力(kVA))値が最大となる負荷

の出力 (kW)

 $\left(\frac{\mathbf{k}\mathbf{s}}{\mathbf{z}\mathbf{m}} - \frac{\mathbf{d}}{\eta \, \mathbf{b} \cdot \cos \theta \, \mathbf{b}}\right)^{\mathbf{m}\mathbf{i}}$  を計算して、その値が最大となる mi をM3 とする。

K:負荷の出力合計(kW)

4 許容逆相電流出力係数 (RG4)

R G4=
$$\frac{1}{0.15 \cdot \text{K}} \sqrt{(H - R A I)^2 + \{1.47 \cdot (A + B) - 2.94 \cdot C\}^2 \cdot (1 - 3u + 3u^2)}$$

K:負荷の出力合計(kW)

H:高調波電力合計值(kVA)

$$H = \frac{1.3}{2.3 - \frac{R}{K}} \cdot \sqrt{(0.355 \cdot R6)^2 + (0.606 \cdot R3 \cdot hph)^2}$$

R :整流機器の合計値(kW)

R6:6相全波整流機器の定格出力合計値(kW)

R3:3相及び単相全波整流機器の定格出力合計値(kW)

hph : 移相補正係数

hph =1.0-0.413 $\frac{R}{R}\frac{B}{A}$ 

RA:基準相電源の整流器負荷合計値(kW)

RB:30 度移相電源の整流器負荷合計値(kW)

RAF:アクティブフィルタ効果容量(kVA)

 $RAF = max(0.8 \times ACF0.8 \times H)$ 

ACF:アクティブフィルタ定格容量(kVA)

A:A相単相負荷出力値(kW)

B:B相単相負荷出力値(kW)

C:C相単相負荷出力値(kW)

u: 単相負荷不平衡係数

$$u = \frac{A - C}{\Delta P}$$

ΔP: 単相負荷不平衡分合計出力値(kW)

A≥B≧Cの場合

 $\Delta P = A + B - 2 C$ 

5 発電機出力係数RGの決定

RGは、RG1、RG2、RG3、及びRG4の値の最大のものとする。 RG=max. (RG1、RG2、RG3、RG4)

#### 6 RGの値の調整

5 で求めたRGの値が、1.47Dの値に比べて著しく大きい場合には、対象 負荷とバランスのとれたRG値を選定するようにし、その値が 1.47Dに近づ くよう調整すること。

この場合における調整は、次により行うこと。

- (1) RGの値の実用上望ましい範囲
  - 1.  $47D \le RG \le 2$ . 2
- (2) RG2又はRG3により過大なRGの値が算出されている場合 始動方式の変更を行い(1)の範囲を満足するようにする。
- (3) RG4が要因で過大なRGの値が算出されている場合 特別な発電機を選定し、(1)の範囲を満足するようにする。
- (4) 昇降機が要因でRGの値が過大になっている場合 昇降機の制御方式の変更が有効であり、かつ、可能であれば、それを 行い、RGの値がより小になるように努める。

#### 7 発電機の出力

選定する発電機定格出力は、 $RG \times K$ (kVA)以上とする。ただし、 $RG \times K$ (kVA)の値の 95%以上の標準定格値のものがある場合は、それを選ぶことができるものであること。

8 発電機出力係数 (RG) の算出手順

発電機出力係数(RG)の算出方法は、前述の通りであるが、その具体的 算出に当たっては、様式3に示す計算シートを用いるものであること。

なお、計算シートを用いた算出の手順は、次によることとし、各算出式に 用いる係数等については、別記6の諸元表によること。

(1) 発電機出力の算出

負荷表の集計結果に基づいて、様式3「自家発電設備出力計算シート (発電機)」(以下「発電機出力計算シート」という。)の所定の欄に当該 数値を記入し、発電機出力を算出する。

(2)  $RG1=1.47D \cdot Sf$ 

=1. 47×① × ② = ③

①:D 別記6.1.(2)より求め記入する。

②:Sf 下記の計算結果より求め記入する。

(4): RG1 上記の計算結果をRG1とする。

# $Sf = 1 + 0.6 \frac{\Delta P}{K}$

$$= 1 + 0.6 \times \frac{32}{8}$$
  $= 42$ 

- ②: Δ P 下記の計算結果より求め記入する。
- ⑧: K 負荷表の8の値を記入する。
- **②**: S f 上記の計算結果をS f とする。

- ②:A 負荷表のA②の値を記入する。
- ⊕: B 負荷表のB
  ⊕の値を記入する。
- ①:C 負荷表のCOの値を記入する。
- ②: Δ P 上記の計算結果を Δ P とする。

# (3) $RG2 = \frac{1-\Delta E}{\Delta E} \cdot xd'g \cdot \frac{ks}{z'm} \cdot \frac{M2}{K}$

= 47

Φ: ΔΕ 別記6. 2より求め記入する。

⊕:xd'g 別記6.2より求め記入する。

 $m{ heta}: rac{ks}{Z'm}$  負荷表の $m{ heta}$  の位を記入する。

- ⑫: M2 負荷表の⑫M2 の値を記入する。
- ⊕: RG2 上記の計算結果をRG2とする。

(4) 
$$RG3 = \frac{fv1}{KG3} \left\{ 1.47d + \left(\frac{ks}{z'm} - 1.47d\right) \frac{M3}{K} \right\}$$

- = 50
- (15: M3 負荷表の(15M3の値を記入する。

昇降機がある場合は1.0、昇降機がない場合は別記6. 60:fv1 2-1より求め記入する。

(7): KG3 別記6.2より求め記入する。

❸: d 別記6.1.(2)より求め記入する。

 $oldsymbol{\mathfrak{Q}}:rac{\mathrm{ks}}{\mathbb{Z}^{'}}$  負荷表の $oldsymbol{\mathfrak{G}}$ M3 における $oldsymbol{\mathfrak{Q}}$   $rac{\mathrm{ks}}{\mathbb{Z}^{'}}$  の値を記入する。

60:RG3 上記の計算結果をRG3とする。

(5) 
$$R G_4 = \frac{1}{0.15K} \sqrt{(H - R A I)^2 + \{1.47 \cdot (A + B) - 2.94 \cdot C\}^2 \cdot (1 - 3u + 3u^2)}$$

$$= \frac{1}{0.15 \times \$} \sqrt{(1-3 \times 1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.47)(1.$$

$$H = \frac{1.3}{2.3 - \frac{R}{K}} \sqrt{(0.355 \times R6)^2 + (0.606 \times R \ 3 \times h \ p \ h)^2}$$

$$= \frac{1.3}{2.3 - \frac{24}{8}} \sqrt{(0.355 \times 3)^{2} + (0.606 \times 4) \times 35} \times (3.55 \times 3)^{2}$$

$$RAF = max.$$
 (0.  $8 \times ACF$ , 0.  $8 \times H$ )

$$RAF = max.$$
 (0.  $8 \times ACF$ , 0.  $8 \times H$ )  
=  $max.$  (0.  $8 \times \%$  0.  $8 \times \%$  ) =  $\%$ 

$$u = \frac{A - C}{\Delta P} = \frac{29 - 3 - 3}{32} = 62$$

8 : K 負荷の出力合計(kW)

 $\mathbb{O}: \mathbb{H}$ 高調波電力合成値(kVA) ②: RAF アクティブフィルタ効果容量(kVA)

②:A A相単相負荷出力値(kW)

砂:B B相単相負荷出力値(kW)

(1): C C相単相負荷出力値(kW)

62: u 単相負荷不平衡係数

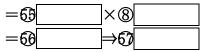
63: u 2 単相負荷不平衡係数

③: R6 6 相全波整流器の定格出力合計値(kW)

②:R3 3相及び単相全波整流器の定格出力合計値(kW)

79:hph 移相補正係数

⑩:ACF アクティブフィルタ効果容量(kVA)


⑦:RA 基準相分の整流機器合計容量(kW)

②:RB 30 度移相分の整流機器合計容量 (kW)

(6) RGを求める。

(7) 発電機定格出力





60:上記の計算結果を発電機計算出力とする。

**60:60**の計算値に対して-5%(裕度範囲)を考慮して、発電機定格出力とする。

様 式 3

|                    | R G 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} R  G_2 \\ \end{array}$                                                                                                                                                                  | R G3                                                  | B G 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R G 55                      | D kvA                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| 自家発電設備出力計算シート(発電機) | $= 1.47 \text{D} \cdot \text{Sf} = 1.47 \times 40  = 1.47 \text{D} \cdot \text{Sf} = 1.47 \times 40  = 1.47 \text{D} \cdot \text{Sf} = 1.47 \times 40  = 1.47 \text{D} \cdot \text{Sf} = 1.47 \times 40  = 1.47 \times $ | $= \frac{1 - \Delta E}{\Delta E} \cdot \operatorname{xd}' g \cdot \frac{ks}{Z'm} \cdot \frac{M^2}{K} = \frac{1 - 44}{44} \times 45 \times 45 \times 46 \times 46 \times 46 \times 46 \times 46 \times 46$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $= \frac{1}{0.15 \cdot K} \sqrt{(H - R A F)^2 + \{1.47 \cdot (A + B) - 2.94 \cdot C\}^2 \cdot (1 - 3u + 3u^2)}$ $= \frac{1}{0.15 \cdot K} \sqrt{(H - R A F)^2 + \{1.47 \cdot (A + B) - 2.94 \cdot C\}^2 \cdot (1 - 3u + 3u^2)}$ $H = \frac{1.3}{2.3 - \frac{R}{K}} \sqrt{(0.355 \times R6)^{\frac{3}{2}} \cdot (0.666 \times R3 \times hph)^{\frac{2}{2}}} = \frac{1.3}{2.3 - \frac{60}{80}} \sqrt{(0.355 \times (30)^{\frac{2}{2}} + (0.606 \times (30)^{\frac{2}$ | RG1、RG2、RG3、RG4のうち最大値 RG=R□ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| 自家発電設備             | В G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R G <sub>2</sub>                                                                                                                                                                                          | R G <sub>3</sub>                                      | R<br>G4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R G                         | 発電機定格<br>(kVA)                                         |

備考

1. EV有の場合の $\Delta$  Eは、0.2以下とする。 2. EV有の場合は、fu=1.0とし、EV無の場合のfuは、諸元表2-1による。

#### 別記3

#### 発電機出力係数 (RG) の算出式 (詳細式)

1 定常負荷出力係数(RG1)

$$RG_1 = \frac{1}{\eta L} \cdot D \cdot Sf \cdot \frac{1}{\cos \theta g}$$

ηL: 負荷の総合効率

$$\eta L = \frac{K}{\sum_{n i}^{mi}}$$

mi :個々の負荷機器の出力 (kW)

η i: 当該負荷の効率

K:負荷の出力合計(kW)

D : 負荷の需要率

Sf: 不平衡負荷による線電流の増加係数

$$Sf = \sqrt{1 + \frac{\Delta P}{K} + \frac{\Delta P^2}{K} (1 - 3 u + 3 u)}$$

ΔP: 単相負荷不平衡分合計出力値(kW)

三相各線間に、単相負荷A、B及びC出力値(kW)があり、A

≧B≧Cの場合

 $\Delta P = A + B - 2 C$ 

u : 単相負荷不平衡係数

$$\mathbf{u} = \frac{\mathbf{A} - \mathbf{C}}{\Delta \mathbf{P}}$$

cos θ g:発電機の定格力率

2 許容電圧降下出力係数(RG2)

$$RG_{2} = \frac{1 - \Delta E}{\Delta E} \cdot xd'g \cdot \frac{ks}{z'm} \cdot \frac{M2}{K}$$

ΔE:発電機端許容電圧降下 (PU (自己容量ベース))

xd'g:負荷投入時における電圧降下を評価したインピーダンス (PU)

ks : 負荷の始動方式による係数

Z'm: 負荷の始動時インピーダンス (PU)

M2:始動時の電圧降下が最大となる負荷機器の出力(kW)

K:負荷の出力合計(kW)

3 短時間過電流耐力出力係数(RG3)

$$RG_3 = \frac{fv_1}{KG_3} \left\{ \frac{d}{\eta \ b \cdot \cos\theta \ b} \left( 1 \cdot \frac{M \ 3}{K} \right) + \frac{ks}{Z'm} \cdot \frac{M_3}{K} \right\}$$
$$= \frac{fv_1}{KG_3} \left\{ \frac{d}{\eta \ b \cdot \cos\theta \ b} + \left( \frac{ks}{Z'm} - \frac{d}{\eta \ b \cdot \cos\theta \ b} \right) \frac{M_3}{K} \right\}$$

fv1 : 瞬時回転数低下、電圧降下による投入負荷低減係数

通常の場合は、f v 1 = 1. 0 とし、次の条件に全て適合する場合は、次式による。

- ① すべて消防負荷で、下式のM3に該当する負荷機器は、軽負荷(ポンプ類であるあること
- ② 原動機はディーゼル機関又はガスタービン(一軸)とし、ディーゼル 機関の場合は、K≤35kW、ガスタービンの場合は、K≤55kWであること
- ③ 電動機の始動方式は、ラインスタート、Y-Δ始動(クローズドを含む)、リアクトル始動、コンドルファ始動、特殊コンドルファ始動であること
- ④ 負荷にエレベーターがないこと
- ⑤ 負荷に分負荷がないこと
- ⑥ M/K≥0. 333 であること

計算式

 $fv1=1. 00-0. 12 \times M3/K$ 

KG3:発電機の短時間過電流耐力(PU)

d:ベース負荷の需要率

η b :ベース負荷の効率

cos θ b :ベース負荷の力率

ks: 負荷の始動方式による係数

Z'm: 負荷の始動時インピーダンス (PU)

M3 : 短時間過電流耐力を最大とする負荷機器の出力(kW)

K:負荷の出力合計(kW)

4 許容逆相電流出力係数(RG4)

$$RG4 = \frac{1}{K} \cdot \frac{1}{KG4} \sqrt{(H - RAF)^2 + \left(\sum \frac{Ai}{\eta \ i \cdot \cos \theta \ i} + \sum \frac{Bi}{\eta \ i \cdot \cos \theta \ i} - 2\sum \frac{Ci}{\eta \ i \cdot \cos \theta \ i}\right)^2 \left(1 - 3u - 3u^2\right)}$$

K:負荷の出力合計(kW)

KG4:発電機の許容逆相電流による係数 (PU)

H:高調波電力合成値(kVA)

$$\mathbf{H} = \mathbf{h}\mathbf{b} \cdot \sqrt{\left(\sum \frac{R6\mathbf{i} \cdot \mathbf{h}\mathbf{k}\mathbf{i}}{\eta \, \mathbf{i} \cdot \cos \theta \, \mathbf{i}}\right)^2 + \left(\sum \frac{R3\mathbf{i} \cdot \mathbf{h}\mathbf{k}\mathbf{i}}{\eta \, \mathbf{i} \cdot \cos \theta \, \mathbf{i}} \cdot \mathbf{h}\mathbf{p}\mathbf{h}\right)^2}$$

hb: 高調波分の分流係数

 $hb = \frac{1.3}{2.3 - min(1, R/K)}$ 

R:整流機器の合計値(kW)

R6i : 6 相全波整流器の定格出力値(kW)

R3i : 3相及び単相全波整流器の定格出力値(kW)

η i : 当該機器の効率 cos θ i : 当該機器の力率

hki : 当該機器の高調波発生率

6相全波整流器の場合 hk=0. 288 3相全波整流器の場合 hk=0. 491

単相全波整流器の場合 hk=0.570

hph : 移相補正係数

hph=1. 0-0.  $413 \times RB/RA$ 

RA:基準相電源の整流器負荷合計値(kW)

RB:30 度移相電源の整流器負荷合計値(kW)

RA≧RB とする。

RAF:アクティブフィルタ効果容量(kVA)

アクティブフィルタの定格容量合計をACF(kW)とすると、RAFの取りうる値は、次のとおりとする。

 $RAF=0.8 \times min. (H, ACF)$ 

Ai、Bi、Ci:三相各線間に単相負荷A、B及びCの合計出力値(kW)があり、A≥B≥Cの場合、各線間の当該機器出力(kW)をAi、Bi及びCiとする。

u: 単相負荷不平衡係数

$$\mathbf{u} = \frac{\mathbf{A} - \mathbf{C}}{\Delta \mathbf{P}}$$

 $\Delta P = A + B - 2 C$  とする。

#### 原動機出力係数(RE)の算出方法

1 定常負荷出力係数(RE1)

RE1=1.3D

D:負荷の需要率

- 2 許容回転数変動出力係数 (RE2)
  - (1) 原動機がディーゼルエンジンの場合

$$\begin{split} RE_2(D/E) &= \left\{ 1.026 d \left( 1 - \frac{M_2'}{K} \right) + \frac{1.163}{\varepsilon} \cdot \frac{ks}{Z'm} \cdot \cos \theta \text{ s } \cdot \frac{M_2'}{K} \right\} \text{fv}_2 \\ &= \left\{ 1.026 d + \left( \frac{1.163}{\varepsilon} \cdot \frac{ks}{Z'm} \cdot \cos \theta \text{ s} - 1.026 d \right) \frac{M_2'}{K} \right\} \text{fv}_2 \end{split}$$

d :ベース負荷の需要率

ε : 原動機の無負荷時投入許容量 (PU (自己容量ベース))

ks: 負荷の始動方式による係数

Z'm: 負荷の始動時インピーダンス (PU)

cos θ s : 負荷の始動時力率

M2': 負荷投入時の回転数変動が最大となる負荷機器の出力(kW)

すべての{(負荷の始動入力(kW)) - (原動機瞬時投入許容容量を考慮した定常負荷入力(kW))}の値が最大となる

負荷出力 (kW)

 $\left\{\frac{\mathbf{ks}}{\mathbf{Z'm}}\cdot\mathbf{cos}\;\theta\;\mathbf{s}-\left(\mathbf{\epsilon}\;-\mathbf{a}\right)\frac{\mathbf{d}}{\eta\;\mathbf{b}}\right\}$ mi を計算して、その値が最大となる mi をM2'

とする。

a:原動機の仮想全負荷時投入容量(PU)

nb:ベース負荷の効率

mi :個々の負荷機器の出力(kW)

K:負荷の出力合計(kW)

fv2 : 瞬時周波数低下、電圧降下による投入負荷減少係数

別記6. 2-1による。

(2) 原動機がガスタービンの場合

$$RE_2(GT) = \left(\frac{1.163}{\varepsilon} \cdot \frac{ks}{Z'm} \cdot \cos \theta \, s \cdot \frac{M_2'}{K}\right) f v_2$$

ε :原動機の無負荷時投入許容量 (PU)

ks : 負荷の始動方式による係数

Z'm : 負荷の始動時インピーダンス (PU)

cos θs : 負荷の始動時力率

M2': 負荷投入時の回転数変動が最大となる負荷機器の出力(kW)

K:負荷の出力合計(kW)

fv2 : 瞬時周波数低下、電圧降下による投入負荷減少係数別記 6.

2-1による。

3 許容最大出力係数(RE3)

$$RE_{3} = \frac{fv_{3}}{\gamma} \left\{ 1.368d \left( 1 - \frac{M_{3}'}{K} \right) + 1.163 \frac{ks}{Z'm} \cdot \cos \theta \ s \cdot \frac{M_{3}'}{K} \right\}$$
$$= \frac{fv_{3}}{\gamma} \left\{ 1.368d + \left( 1.163 \frac{ks}{Z'm} \cdot \cos \theta \ s - 1.368d \right) \frac{M_{3}'}{K} \right\}$$

fv3 : 瞬時周波数低下、電圧降下による投入負荷減少係数

別記6.2-1による。

γ : 原動機の短時間最大出力 (PU)

d:ベース負荷の需要率

ks : 負荷の始動方式による係数

Z'm: 負荷の始動時インピーダンス (PU)

cos θ s:負荷の始動時力率

M3': 負荷投入時に原動機出力を最大とする負荷機器の出力(kW)

すべての(始動入力(kW)-定格入力(kW))の値が最大となる負荷機器の出力(kW)

 $\left\{\frac{ks}{Z'm}\cdot\cos\theta\,s-\frac{d}{n\,b}\right\}$ ni を計算して、その値が最大となる mi をM3'とする。

η b :ベース負荷の効率

mi :個々の負荷機器の出力(kW)

K : 負荷の出力合計 (kW)

4 原動機出力係数REの決定

REは、RE1、RE2及びRE3の最大のものとする。

RE = max. (RE1, RE2, RE3)

5 REの値の調整

4 で求めたREの値が 1. 3Dの値に比べて著しく大きい場合には、対象負荷とバランスのとれたREの値を選定し、その値が 1. 3Dに近づくよう調整すること。

この場合における調整は、次により行うこと。

(1) REの値の実用上望ましい範囲

1.  $3D \le R E \le 2$ . 2

- (2) 昇降機以外の負荷が要因で過大なREの値となる場合、始動方式の変 更を行って、(1)の範囲を満足するようにする。
- (3) 回生電力を生ずる昇降機がある場合
  - (1)の範囲を満足するものであっても、回生電力を生ずる昇降機がある場合、この回生電力を吸収できることを確認する。

吸収できない場合は、回生電力を吸収する負荷を設けること。

6 原動機の軸出力

原動機の軸出力は、RE×K×Cp(kW)以上とする。

7 原動機出力係数 (RE) の算出手順

原動機出力係数(RE)の算出方法は、前述の通りであるが、その具体的 算出に当たっては、様式4に示す計算シートを用いるものであること。

なお、計算シートを用いた算出の手順は、次によることとし、各算出式に 用いる係数等については、別記6の諸元表によること。

(1) 原動機出力の算出と整合

負荷表及び発電機出力計算シートに基づいて様式4「自家発電設備出力計算シート(原動機・整合)」の所定欄に当該数値を記入し原動機出力を算出、さらに発電機出力と原動機出力の整合を確認して、自家発電設備出力を求める。

(2) RE 1=1. 3D=1.  $3\times \mathbb{Q}$  =  $\mathbb{Q}$ 

⊕: D 別記6.1.(2)より求め記入する。

69: 上記の計算結果をRE1とする。

(3) 原動機種別によるRE2

ア ディーゼルエンジンの場合

$$RE_{2} = \left\{1.026d + \left(\frac{1.163}{\varepsilon} \cdot \frac{ks}{Z'm} \cdot \cos \theta \, s - 1.026d\right) \times \frac{M_{2}'}{K}\right\} \text{fv}_{2}$$

$$= \left\{1.026 \times \text{1} \cdot 026 \times \text{2} \cdot \text{2}$$

**9**: ε 別記 6.3 より求め記入する。

 $oldsymbol{0}: rac{\mathrm{ks}}{\mathrm{Z'm}} \cdot \cos \theta \mathrm{s}$  負荷表の $oldsymbol{0}$ M2'における mi の $oldsymbol{0}$   $\frac{\mathrm{ks}}{\mathrm{Z'm}} \cdot \cos \theta \mathrm{s}$  の値を記

入する。

⑲: M2' 負荷表の⑲M2'の値を記入する。

❸: fv2 別記6. 2-1による。

①:RE2 上記の計算結果をRE2とする。

イ ガスタービンの場合

$$RE_2 = \left(\frac{1.163}{\varepsilon} \cdot \frac{ks}{Z'm} \cdot \cos \theta \, s \cdot \frac{M_2'}{K}\right) f v_2$$

$$= (\frac{1.163}{\text{ }} \times \text{ } ) \times \text{ } \times \text{ } = \text{ } \text{ } )$$

台: RE2 上記の計算結果をRE2とする。

(4) 
$$RE_3 = \frac{fv_3}{\gamma} \left\{ 1.368d + \left( 1.163 \frac{ks}{Z'm} \cdot \cos \theta \text{ s} - 1.368d \right) \frac{M_3'}{K} \right\}$$

69: fv3 別記6.2-1による。

③: γ 別記6.3より求める。
 ④: Z'm · cos θ s 負荷表の②M3'における mi の Z'm

①:RE3 上記の計算結果をRE3とする。

(5) REを求める。

60:60、60又は60及び60の値のうち、最大の値をREとする。 なお、1.  $3 \le RE \le 2$ . 2 が望ましいこと。

(6) 原動機定格出力

$$E = R E \cdot K \cdot C P$$

$$= 69 \times 8 \times 69$$

$$= 69 \rightarrow 69$$

68:上記の計算結果を原動機計算出力68とする。

69:68の算出値以上の値を原動機定格出力69とする。

(7) 整合

消防用設備等の非常電源として、有効かつ適切な自家発電設備の選定のために、発電機出力と原動機出力には一定の関係があり、その適切な組み合わせを図る必要がある。

発電機定格出力のと原動機定格出力の値が次式の関係にある場合、 当該出力を自家発電設備の定格出力とする。

 $MR \ge 1.0$ 

$$\mathbf{MR} = \mathbf{1.13} \frac{\mathbf{E}}{\mathbf{G} \cdot \mathbf{CP}} = 1.13 \frac{\mathbf{G}}{\mathbf{G}} \times \mathbf{G}$$

$$= \mathbf{O}$$

なお、MR<1.5となるように計画することが望ましいこと。

様 式 4

|                       |                     |                                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | k W                                                                                      |                                                         |                                                |
|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|
|                       | R E 1               | $R \to \mathbb{R}$                                                                                                                                                                                                                     | $\begin{array}{c} \text{R E}_2 \\ \text{@2} \end{array}$      | R E 3 (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R E 66                   | ¥ (9) (4)                                                                                | $MR \ge 1.0$                                            | ディーゼルエンジン<br>ガスタービン (一軸、二軸)                    |
| 自家発電設備出力計算シート(原動機・整合) | $=1.3D=1.3\times41$ | $= fv_2 \{1.026d + (\frac{1.163}{\epsilon} \cdot \frac{ks}{2'm} \cos \theta_b - 1.026d) \frac{M_2'}{K}\}$ $= 38 \left[ 1.026 \times 48 \right] + (\frac{1.163}{59} \times 60 \right] - 1.026 \times 48 \left[ 1.026 \times 48 \right]$ | $ E V \mathcal{O} \not = \\                                 $ | $=\frac{f_{V3}}{\gamma} \{1.3684 + (1.163 \frac{\text{ks}}{\text{Z'm}} \cos \theta_s - 1.3684) \frac{\text{M3}}{\text{K}}\}$ $=\frac{39}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) - (1.368 \times 48 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{39}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) - (1.368 \times 48 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) - (1.368 \times 48 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 64 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 48 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 64 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 64 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 64 \text{Cos} + (1.163 \times 64 \text{Cos}) \times \frac{22}{8} \text{Cos} \} \} = \frac{1}{63} \frac{\text{Cos}}{\text{Cos}} \{1.368 \times 64 \text{Cos} + (1.16$ | RE1、RE2、RE3のうち最大値 RE=REJ | $= R \ E \cdot K \cdot C \ p$ $= 66 \ \times (8) \ \times (8) \ \times (6) \ \times (8)$ | $MR = 1.13 \frac{E}{C p \cdot G} = 1.13 \frac{69}{50} $ | 電設備の出力 $G=⑤$ $WA$ 力率=0.8 $E=⑥$ $W$ $ガ$ ス $ガ$ ス |
| 自家発電設備L               | R E1                | R E <sub>2</sub> メベベベド                                                                                                                                                                                                                 | <b>∀</b> ∀ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √                | $\mathbf{R} = \mathbf{E}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R E                      | 原動機定格出力臣<br>(kW)                                                                         | 腾<br>M R                                                | 自家発                                            |

1. EV有の場合は、fv、fv3=1.0とし、EV無の場合のfv、fv3は、諸元表2-1による。2. MR<1.0の場合は、MR≥1.0となるようにEの値を増す。なお、MR<1.5であることが望ましい。 備考

#### 原動機出力係数 (RE) の算出式 (詳細式)

1 定常負荷出力係数(RE1)

$$RE_1 = \frac{1}{\eta L} \cdot D \cdot \frac{1}{\eta g}$$

ηL: 負荷の総合効率

$$\eta L = \frac{K}{\sum_{n i}^{mi}}$$

K:負荷の出力合計(kW)

mi:個々の負荷機器の出力(kW)

η i: 当該負荷の効率

D :負荷の需要率

ηg:発電機の効率

2 許容回転数変動出力係数 (RE2)

$$RE_2 = \frac{1}{\varepsilon} \cdot \frac{fv_2}{\eta g'} \left[ \left( \varepsilon - a \right) \frac{d}{\eta b} \left( 1 - \frac{M_2'}{K} \right) + \frac{ks}{Z'm} \cos \theta s \cdot \frac{M_2'}{K} \right]$$

$$= \frac{1}{\epsilon} \cdot \frac{f v_2}{\eta g'} \left[ \left( \epsilon - a \right) \frac{d}{\eta b} + \left\{ \frac{ks}{Z'm} \cos \theta \right. s - \left( \epsilon - a \right) \frac{d}{\eta b} \right\} \frac{M_2'}{K} \right]$$

ε:原動機の無負荷時投入許容量 (PU (自己容量ベース))

fv2:瞬時回転数低下、電圧降下による投入負荷低減係数

通常の場合は、fv2=1.0 とし、次の条件に全て適合する場合は、次式による。

- ① すべて消防負荷で、下式のM2'に該当する負荷機器は、軽負荷(ポンプ類)であること。
- ② 原動機はディーゼル機関又はガスタービン(一軸) とし、ディーゼル機 関の場合は、K≤35kW、ガスタービンの場合は、K≤55kW であること。
- ③ 電動機の始動方式は、ラインスタート、Y─∆始動(クローズドを含む)、 リアクトル始動、コンドルファ始動、特殊コンドルファ始動であること。
- ④ 負荷にエレベーターがないこと。
- ⑤ 負荷に分負荷がないこと。
- ⑥ M/K≥0. 333 であること。

計算式

 $fv2=1. 00-0. 24 \times M2' / K$ 

ng':発電機の過負荷時効率

a:原動機の仮想全負荷時投入許容量(PU)

d:ベース負荷の需要率

η b : ベース負荷の力率

ks: 負荷の始動方式による係数

Z'm: 負荷の始動時インピーダンス (PU)

cos θ s:負荷の始動時力率

M2': 負荷投入時の回転数変動が最大となる負荷機器の出力(kW)

K:負荷の出力合計(kW)

3 許容最大出力係数 (RE3)

$$\begin{split} RE_{3} &= \frac{fv_{3}}{\gamma} \cdot \frac{1}{\eta \, g'} \left\{ \frac{d}{\eta \, b} \left( 1 - \frac{M_{3}'}{K} \right) + \frac{ks}{Z'm} \cos \theta \, s \cdot \frac{M_{3}'}{K} \right\} \\ &= \frac{fv_{3}}{\gamma} \cdot \frac{1}{\eta \, g'} \left\{ \frac{d}{\eta \, b} + \left( \frac{ks}{Z'm} \cos \theta \, s - \frac{d}{\eta \, b} \right) \frac{M_{3}'}{K} \right\} \end{split}$$

fv3: 瞬時回転数低下、電圧降下による投入負荷低減係数 通常の場合は、fv3=1.0 とし、次の条件に全て適合する場合は、次式による。

- ① すべて消防負荷で、下式のM3'に該当する負荷機器は、軽負荷(ポンプ類)であること。
- ② 原動機はディーゼル機関又はガスタービン(一軸)とし、ディーゼル機関の場合は、 $K \le 35kW$ 、ガスタービンの場合は、 $K \le 55kW$  であること。
- ③ 電動機の始動方式は、ラインスタート、Y → Δ始動(クローズドを含む)、 リアクトル始動、コンドルファ始動、特殊コンドルファ始動であること。
- ④ 負荷にエレベーターがないこと。
- ⑤ 負荷に分負荷がないこと。
- ⑥ M/K≥0. 333 であること。

#### 計算式

 $fv3=1. 00-0. 24\times M3' / K$ 

y:原動機の短時間最大出力(PU)

ηg': 発電機の過負荷時効率

d:ベース負荷の需要率

*n*b :ベース負荷の効率

ks: 負荷の始動方式による係数

Z'm: : 負荷の始動時インピーダンス (PU)

cos θs:負荷の始動時力率

M3': 負荷投入時に原動機出力を最大とする負荷機器の出力(kW)

K:負荷の出力合計(kW)

## 諸元表

# 1 自家発電設備の出力計算用諸元表

# (1) 負荷機器の定常時定数

|           |     |                              |       |                         |        |                     | 始              |                                |                                  | 定常時                              | 定数                |          |
|-----------|-----|------------------------------|-------|-------------------------|--------|---------------------|----------------|--------------------------------|----------------------------------|----------------------------------|-------------------|----------|
| 負荷        | 記 号 | 種類                           | 出身係数  | 負荷表<br>入力<br>単位<br>(*1) | 単相三相の別 | 稼<br>動<br>率<br>(*2) | 動完了後の変動の有無(*3) | 出<br>力<br>範<br>囲<br>kW<br>(*4) | ηi                               | $\cos \theta$ i                  | 高周波<br>発生率<br>h k | 多重化効果の有無 |
|           | MLT | 低圧電動機<br>(トップランナーモータ)        | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 表1.(5)                           | 表1.(5)                           | 0.000             | 無        |
|           | MLO | 低圧電動機<br>(トップランナーモータ以外)      | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 表1.(6)                           | 表1.(6)                           | 0.000             | 無        |
| 誘         | MH  | 高圧電動機                        | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 表1.(7)                           | 表1.(7)                           | 0.000             | 無        |
| 導電動       | VFT | インバータ電動機<br>(トップランナーモー<br>タ) | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 0.800                            | 1.000                            | 0.491             | 有<br>(¥) |
| 機<br>(*5) | VFO | インバータ電動機<br>(トップランナーモータ以外)   | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 0.800                            | 1.000                            | 0.491             | 有<br>(¥) |
| (*6)      | MM  | 巻線形電動機                       | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 0.850                            | 0.800                            | 0.000             | 無        |
|           | SM1 | 双固定子電動機                      | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              | ①<br>②<br>③<br>④               | 0.835<br>0.835<br>0.860<br>0.885 | 0.825<br>0.825<br>0.825<br>0.840 | 0.000             | 無        |
|           | EL  | 白熱灯                          | 1.000 | 出力<br>kW                | 単相     | 1.000               | 無              |                                | 1.000                            | 1.000                            | 0.000             | 無        |
|           | FL  | 蛍光灯                          | 1.000 | 出力<br>kW                | 単相     | 1.000               | 無              |                                | 1.000                            | 0.800                            | 0.000             | 無        |
| 電灯<br>差込  | СО  | 差込機器                         | 1.000 | 出力<br>kW                | 単相     | 1.000               | 無              |                                | 1.000                            | 0.800                            | 0.000             | 無        |
|           | DN  | 電熱負荷                         | 1.000 | 出力<br>kW                | 単相     | 1.000               | 無              |                                | 1.000                            | 1.000                            | 0.000             | 無        |
|           | P1  | 単相負荷一般                       | 1.000 | 出力<br>kW                | 単相     | 1.000               | 無              |                                | 0.900                            | 0.900                            | 0.000             | 無        |
| 數 法叩      | RF1 | 単相全波整流                       | 1.000 | 出力<br>kW                | 単相     | 1.000               | 無              |                                | 0.800                            | 0.850                            | 0.570             | 有<br>(¥) |
| 整 流器      | RF3 | 3相全波電流                       | 1.000 | 出力<br>kW                | 三相     | 1.000               | 無              |                                | 0.800                            | 0.850                            | 0.491             | 有<br>(¥) |
| CVCF      | CV1 | 単相全波整流                       | 1.000 | 此力<br>kVA               | 単相     | 1.000               | 無              |                                | 0.900                            | 0.900                            | 0.570             | 有<br>(¥) |

|        | CV3 | 3相全波電流          | 1.000 | 出力<br>kVA | 三相 | 1.000  | 無 | 0.900 | 0.900 | 0.491 | 有<br>(¥) |
|--------|-----|-----------------|-------|-----------|----|--------|---|-------|-------|-------|----------|
|        | CV6 | 6 相全波電流         | 1.000 | 出力<br>kVA | 三相 | 1.000  | 無 | 0.900 | 0.900 | 0.288 | 無        |
|        |     | 直 流 サイリスタレオナート゛ | 1.224 | 出力<br>kW  | 三相 | 表1.(4) | 有 | 0.850 | 0.800 | 0.491 | 有<br>(¥) |
|        |     | 直流 M-G          | 1.590 | 出力<br>kW  | 三相 | 表1.(4) | 有 | 0.850 | 0.850 | 0.000 | 無        |
| エレベーター | EV  | 交流帰還制御          | 1.224 | 出力<br>kW  | 三相 | 表1.(4) | 有 | 0.850 | 0.800 | 0.491 | 有<br>(¥) |
|        |     | 交流 VVVF         | 1.224 | 出力<br>kW  | 三相 | 表1.(4) | 有 | 0.850 | 0.800 | 0.491 | 有<br>(¥) |
|        |     | 油圧制御            | 2.000 | 出力<br>kW  | 三相 | 表1.(4) | 有 | 0.950 | 0.850 | 0.000 | 無        |

- 注 (\*1) 出力m i (kW) は以下により計算する。
  - ・負荷表入力単位が出力 kWのもの : m i =出力換算係数×負荷表入力値
  - ・負荷表入力単位が出力 kVA のもの: m  $\,\mathrm{i} =$ 出力換算係数×負荷表入力値×力率  $\cos\theta\,\mathrm{i}$
  - ・負荷表入力単位が入力 kWのもの :mi=出力換算係数×負荷表入力値×効率  $\eta i$
  - ・負荷表入力単位が入力 kVA のもの:m i =出力換算係数×負荷表入力値×力率  $\cos\theta$  i×効率  $\eta$  i
  - (\*2) 稼動率は、負荷出力合計K(kW)及び負荷の相当出力Mp(kW)を求める際に用いる。
  - (\*3) 継続負荷は投入以後の各ステップにおいて継続的に投入負荷として扱われるものを示す。
  - (\*4) 電動機出力  $(m\ i$  ) により  $\cos\theta$  s の値が変わるものについては、次のように出力範囲を区切る。
    - ①:5.5kW未満、②:5.5kW以上11kW未満、③:11kW以上30kW未満、④:30kW以上
  - (\* 5) VFO、MM は低圧、高圧共通とする。(VFT は、低圧のみ。)
  - (\*6) MLT 及び VFT の諸元値の出力範囲は、 $0.75 \mathrm{kW}$ 以上 $375 \mathrm{kW}$ 以下とする。

#### (2) 負荷機器の需要率

| 項目                | 記号 | 防災/一般の別 | 値           |
|-------------------|----|---------|-------------|
|                   |    | 防災設備    | 1. 0        |
| 負荷の需要率            | D  | 一般設備    | 実情値         |
|                   |    | 加文市文が用  | (0. 4~1. 0) |
| ベース負荷の需           |    | 防災設備    | 1. 0        |
| 要率                | d  | 一般設備    | 実情値         |
| <del>安宁</del><br> |    | 一方文記が用  | (0. 4~1. 0) |

# (3) 負荷機器の始動時定数

# ア 始動瞬時

|    |        |           |                   |     |      |             |          | 始重     | 协時定数           |                 |           |        |        |        |        |        |        |       |        |
|----|--------|-----------|-------------------|-----|------|-------------|----------|--------|----------------|-----------------|-----------|--------|--------|--------|--------|--------|--------|-------|--------|
| 負  | 記号     | 種         |                   |     | 助    |             |          |        |                | 始動              | 瞬時        |        |        |        |        |        |        |       |        |
| 荷  |        | 類         | 始動                | 記   | 範囲   | RO          | G 2      | RO     | 3 3            |                 | RE2       |        |        | RE3    |        |        |        |       |        |
|    |        |           | 方式                | 号   | k W  | ks          | Z' m     | ks     | Z' m           | ks              | Z' m      | cosθs  | ks     | Z' m   | cosθs  |        |        |       |        |
|    |        |           |                   |     | (*4) |             | 2        |        | 2              |                 | 2         |        |        | 2      |        |        |        |       |        |
|    |        |           |                   |     | 2    |             |          |        |                |                 |           | 0. 600 |        |        | 0.600  |        |        |       |        |
|    |        |           | ラインスタート           | L   | 3    | 1.000       | 0. 120   | 1.000  | 0. 120         | 1.000           | 0.120     | 0. 400 | 1.000  | 0.120  | 0. 400 |        |        |       |        |
|    |        |           |                   |     | 4    |             |          |        |                |                 |           | 0. 300 |        |        | 0. 300 |        |        |       |        |
|    |        |           |                   |     | 1    |             |          |        |                |                 |           | 0.600  |        |        | 0.600  |        |        |       |        |
|    |        |           | Y-Δ始動(最           | 3.7 | 2    | 0. 333 0. 1 | 0.100    | 0.000  | 0. 120         | 0 222           | 0.100     | 0.500  | 0.000  | 0 120  | 0.500  |        |        |       |        |
|    |        |           | 大/次)              | Y   | 3    |             | 0. 120   | 0. 333 | 0. 120         | 0. 333          | 0. 120    | 0.400  | 0. 333 | 0. 120 | 0.400  |        |        |       |        |
|    |        |           |                   |     | 4    |             |          |        |                |                 |           | 0.300  |        |        | 0.300  |        |        |       |        |
|    |        |           |                   |     | 1    |             | 0. 120   |        | 0. 120         | 0. 333          |           | 0.600  |        | 0. 120 | 0.600  |        |        |       |        |
|    |        |           | Υ-Δ始動(そ           | Y   | 2    | 0. 333      |          | 0. 333 |                |                 | 0. 120    | 0.500  | 0. 333 |        | 0.500  |        |        |       |        |
|    |        |           | の他)               |     | 3    | 1           |          |        |                |                 |           | 0. 400 |        |        | 0.400  |        |        |       |        |
|    |        |           |                   |     | 4    |             |          |        |                |                 |           | 0.300  |        |        | 0.300  |        |        |       |        |
|    |        |           | クローズド             |     | 2    |             |          |        |                |                 |           | 0. 600 |        |        | 0.600  |        |        |       |        |
|    |        |           |                   |     |      |             | Y-Δ始動(最  | YC     | 3              | 0. 333          | 0. 120    | 0. 333 | 0. 120 | 0. 333 | 0.120  | 0. 400 | 0. 333 | 0.120 | 0. 400 |
|    |        | 低圧        | 大/次)              |     | 4    |             |          |        |                |                 |           | 0. 300 |        |        | 0. 300 |        |        |       |        |
|    |        | 電動        |                   |     | 1    |             |          |        |                |                 |           | 0.600  |        |        | 0.600  |        |        |       |        |
|    | ) II T | 機         | クローズド<br>Y-Δ始動(そ  | wo  | 2    | 0.000       | 0.100    | 0.000  | 0 100          | 0. 333          | 0 120     | 0.500  | 0. 333 | 0. 120 | 0.500  |        |        |       |        |
|    | MLT    | (トップ°     | Y - Δ 始動(そ<br>の他) | YC  | 3    | 0. 333      | 0. 120   | 0. 333 | 0. 120         | 0. 333          | 0.120     | 0.400  | 0. 333 | 0.120  | 0.400  |        |        |       |        |
|    |        | ランナーモ     | V/IE/             |     | 4    |             |          |        |                |                 |           | 0.300  |        |        | 0.300  |        |        |       |        |
| 誘導 |        | -4)       | リアクトル<br>始動       |     | 1    |             |          |        |                |                 |           | 0.600  |        | 0. 120 | 0.600  |        |        |       |        |
| 電動 |        |           |                   | R   | 2    | 0.700       | 0. 120   | 0.700  | 0. 120         | 0. 490          | 0.120     | 0.500  | 0.490  |        | 0.500  |        |        |       |        |
| 機  |        |           |                   |     | 3    |             |          |        |                |                 |           | 0. 400 |        |        | 0.400  |        |        |       |        |
|    |        |           |                   |     | (1)  |             |          |        |                |                 |           | 0. 300 | +      |        | 0. 300 |        |        |       |        |
|    |        |           | コンドルファ始           |     | 2    |             |          |        |                | 0 0.490         |           | 0.500  |        |        | 0.500  |        |        |       |        |
|    |        |           | コンドルファ始<br>動      | С   | 3    | 0.490       | 0. 120   | 0.490  | 0. 120         |                 | 0.120     | 0. 400 | 0.490  | 0.120  | 0. 400 |        |        |       |        |
|    |        |           |                   |     | 4    |             |          |        |                |                 |           | 0.400  |        |        | 0.400  |        |        |       |        |
|    |        |           |                   |     | 1    |             |          |        |                |                 |           |        |        |        |        |        |        |       |        |
|    |        |           | 特殊コンドルフ           | SC  | 2    | 0. 250      | 0. 120   | 0. 250 | 0. 120         | 0. 250          | 0. 120    | 0. 400 | 0. 250 | 0. 120 | 0. 400 |        |        |       |        |
|    |        |           | ア始動               | 30  | 3    | 0. 250      | 0. 120   | 0. 250 | 0.120          | 0. 250          | 0.120     | 0.400  | 0. 250 | 0.120  | 0.400  |        |        |       |        |
|    |        |           |                   |     | 4    |             |          |        |                |                 |           |        |        |        |        |        |        |       |        |
|    |        |           |                   |     | 1    |             |          |        |                |                 |           |        |        |        |        |        |        |       |        |
|    |        |           | 連続電圧              | VC  | 2    | 0. 120      | 0. 120   | 0.120  | 0. 120         | 0. 120          | 0.120     | 0.300  | 0. 120 | 0.120  | 0.300  |        |        |       |        |
|    |        |           | 制御始動              |     | 3    |             |          |        |                |                 |           |        |        |        |        |        |        |       |        |
|    |        |           |                   |     | (1)  |             |          |        |                |                 |           | 0. 700 |        |        | 0. 700 |        |        |       |        |
|    |        | 低圧        |                   |     | 2    |             |          |        |                |                 |           | 0. 600 |        |        | 0. 600 |        |        |       |        |
|    |        | 電動        | ラインスタート           | L   | 3    | 1.000       | 0. 140   | 1.000  | 0. 140         | 1.000           | 0.140     | 0.500  | 1.000  | 0.140  | 0.500  |        |        |       |        |
|    |        | 機         |                   |     | 4    |             |          |        |                |                 |           | 0. 400 |        |        | 0. 400 |        |        |       |        |
|    | MLO    | (トップ。     |                   |     | 1    |             |          |        | 33 0.140 0.333 | 140 0 222       |           | 0.700  |        |        | 0.700  |        |        |       |        |
|    |        | ランナーモ     | Y-Δ始動(最           | Y   | 2    | 0 222       | 0 140    | 0 222  |                |                 | 333 0 140 | 0.600  | 0 222  | 0 140  | 0.600  |        |        |       |        |
|    |        | -9以<br>外) | 大/次)              | Y   | 3    | 0. 333      | 3 0. 140 | 0. 333 |                | 0. 333   0. 140 | 0.500     | 0. 333 | 0. 140 | 0.500  |        |        |        |       |        |
|    |        |           |                   |     | 4    |             |          |        |                |                 |           | 0.400  |        |        | 0.400  |        |        |       |        |

|     |                    |            |    | _   |        |        |        |        |        |        |        |        |        |        |
|-----|--------------------|------------|----|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|     |                    |            |    | 1   |        |        |        |        |        |        | 0.700  |        |        | 0.700  |
|     |                    | Υ-Δ始動(そ    | Y  | 2   | 0. 333 | 0. 140 | 0. 333 | 0. 140 | 0. 333 | 0.140  | 0.600  | 0. 333 | 0. 140 | 0.600  |
|     |                    | の他)        | _  | 3   | 0.000  | 0.110  | 0.000  | 0.110  | 0,000  | 0.110  | 0.500  | 0.000  | 0.110  | 0.500  |
|     |                    |            |    | 4   |        |        |        |        |        |        | 0.400  |        |        | 0.400  |
|     |                    |            |    | 1   |        |        |        |        |        |        | 0.700  |        |        | 0.700  |
|     |                    | クローズド      |    | 2   |        |        |        |        |        |        | 0.600  |        |        | 0.600  |
|     |                    | Y-Δ始動(最    | YC | 3   | 0. 333 | 0. 140 | 0. 333 | 0. 140 | 0. 333 | 0.140  | 0.500  | 0. 333 | 0.140  | 0.500  |
|     |                    | 大/次)       |    | 4   |        |        |        |        |        |        | 0.400  |        |        | 0.400  |
|     |                    |            |    | (1) |        |        |        |        |        |        | 0.700  |        |        | 0. 700 |
|     |                    | クローズド      |    | 2   |        |        |        |        |        |        | 0.600  |        |        | 0. 600 |
|     |                    | Υ-Δ始動(そ    | YC | 3   | 0.333  | 0.140  | 0. 333 | 0.140  | 0. 333 | 0.140  | 0. 500 | 0.333  | 0.140  | 0. 500 |
|     |                    | の他)        |    | 4)  |        |        |        |        |        |        |        |        |        |        |
|     |                    |            |    |     |        |        |        |        |        |        | 0. 400 |        |        | 0. 400 |
|     |                    |            |    | 1   |        |        |        |        |        |        | 0.700  |        |        | 0.700  |
|     |                    | リアクトル      | R  | 2   | 0.700  | 0. 140 | 0.700  | 0. 140 | 0. 490 | 0.140  | 0.600  | 0.490  | 0.140  | 0.600  |
|     |                    | 始動         |    | 3   |        |        |        |        |        |        | 0.500  |        |        | 0.500  |
|     |                    |            |    | 4   |        |        |        |        |        |        | 0.400  |        |        | 0.400  |
|     |                    |            |    | 1   |        |        |        |        |        |        | 0.700  |        |        | 0.700  |
|     |                    | コンドルファ始    | С  | 2   | 0. 490 | 0. 140 | 0.490  | 0. 140 | 0. 490 | 0. 140 | 0.600  | 0. 490 | 0. 140 | 0.600  |
|     |                    | 動          |    | 3   | 0.450  | 0.140  | 0. 100 | 0.140  | 0.430  | 0.140  | 0.500  | 0.450  | 0.140  | 0.500  |
|     |                    |            |    | 4   |        |        |        |        |        |        | 0.500  |        |        | 0.500  |
|     |                    |            |    | 1   |        |        |        |        |        |        |        |        |        |        |
|     |                    | 特殊コンドルフ    |    | 2   |        |        |        |        |        |        |        |        |        |        |
|     |                    | ア始動        | SC | 3   | 0. 250 | 0. 140 | 0. 250 | 0. 140 | 0. 250 | 0.140  | 0. 500 | 0. 250 | 0. 140 | 0.500  |
|     |                    |            |    | (4) |        |        |        |        |        |        |        |        |        |        |
|     |                    |            |    | (1) |        |        |        |        |        |        |        |        |        |        |
|     |                    | 連続電圧       |    | 2   |        |        |        |        |        |        |        |        |        |        |
|     |                    |            | VC |     | 0. 140 | 0.140  | 0.140  | 0. 140 | 0. 140 | 0.140  | 0.400  | 0. 140 | 0.140  | 0.400  |
|     |                    | 制御始動       |    | 3   |        |        |        |        |        |        |        |        |        |        |
|     |                    |            |    | 4   |        |        |        |        |        |        |        |        |        |        |
|     |                    | ラインスタート    | L  |     | 1.000  | 0. 180 | 1.000  | 0. 180 | 1.000  | 0.180  | 0.400  | 1.000  | 0.180  | 0.400  |
|     | 高圧                 | Y-Δ始動      | Y  |     | 0. 333 | 0. 180 | 0. 333 | 0. 180 | 0. 333 | 0. 180 | 0.400  | 0. 333 | 0. 180 | 0.400  |
| MH  | 電動                 | リアクトル始動    | R  |     | 0.700  | 0.180  | 0.700  | 0. 180 | 0.700  | 0.180  | 0.400  | 0.700  | 0.180  | 0.400  |
|     | 機                  | コント゛ルファ始動  | С  |     | 0.490  | 0.180  | 0.490  | 0.180  | 0.490  | 0.180  | 0.400  | 0.490  | 0.180  | 0.400  |
|     |                    | 特殊コンドルファ始動 | SC |     | 0. 250 | 0.180  | 0. 250 | 0.180  | 0. 250 | 0.180  | 0.470  | 0. 250 | 0.180  | 0.470  |
|     | インバー               |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | タ電動                |            |    |     |        |        |        |        |        |        |        |        |        |        |
| VFT | 機(トッ               |            |    |     | 0.000  | 0.120  | 0.000  | 0. 120 | 0.000  | 0.120  | 0.000  | 0.000  | 0.120  | 0.000  |
|     | フ <sup>°</sup> ランナ |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | -モ- <b>タ</b> )     |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | インバー               |            |    |     |        |        | -      |        |        |        |        |        |        |        |
|     | タ電動                |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | 機(トッ               |            |    |     |        |        |        |        |        |        |        |        |        |        |
| VFO | プ <sup>°</sup> ランナ |            |    |     | 0.000  | 0. 140 | 0.000  | 0. 140 | 0.000  | 0.140  | 0.000  | 0.000  | 0.140  | 0.000  |
|     | - t - 9            |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | 以外)                |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | 巻線                 |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     | 形                  |            |    |     |        |        |        |        |        |        |        |        |        |        |
| MM  | 電動                 |            |    |     | 1.000  | 0.450  | 1.000  | 0.450  | 1.000  | 0.450  | 0.700  | 1.000  | 0.450  | 0.700  |
|     | 機                  |            |    |     |        |        |        |        |        |        |        |        |        |        |
|     |                    |            |    | 1   | 0. 333 | 0. 256 | 0. 333 | 0. 256 | 0. 333 | 0. 256 | 0. 650 | 0. 333 | 0. 256 | 0. 650 |
|     | 双固                 |            |    |     |        |        |        |        |        |        |        |        |        |        |
| SM1 | 定子                 |            |    | 2   | 0. 333 | 0. 256 | 0. 333 | 0. 256 | 0. 333 | 0. 256 | 0.650  | 0. 333 | 0. 256 | 0.650  |
|     | 電動                 |            |    | 3   | 0. 333 | 0. 256 | 0. 333 | 0. 256 | 0. 333 | 0. 256 | 0.600  | 0. 333 | 0. 256 | 0.600  |
|     | 機                  |            |    | 4   | 0.333  | 0. 290 | 0.333  | 0. 290 | 0.333  | 0.290  | 0.550  | 0.333  | 0.290  | 0.550  |

|      | EL  | 白熱                |              |    | 1.000  | 1. 000 | 1.000  | 1.000  | 1.000  | 1.000 | 1.000  | 1.000 | 1.000  | 1.000  |
|------|-----|-------------------|--------------|----|--------|--------|--------|--------|--------|-------|--------|-------|--------|--------|
|      |     | 灯                 |              |    |        |        |        |        |        |       |        |       |        |        |
|      | FL  | 蛍光<br>灯           |              |    | 1.000  | 1.000  | 1.000  | 1.000  | 1.000  | 1.000 | 1.000  | 1.000 | 1.000  | 1.000  |
| 電灯   |     | 差込                |              |    |        |        |        |        |        |       |        |       |        |        |
| 差込   | CO  | 機器                |              |    | 1.000  | 1. 000 | 1.000  | 1.000  | 1.000  | 1.000 | 1.000  | 1.000 | 1.000  | 1. 000 |
|      | DN  | 電 熱               |              |    | 1. 000 | 1. 000 | 1. 000 | 1. 000 | 1. 000 | 1.000 | 1. 000 | 1,000 | 1. 000 | 1. 000 |
|      | DIV | 負荷                |              |    | 1.000  | 1.000  | 1.000  | 1.000  | 1.000  | 1.000 | 1.000  | 1.000 | 1.000  | 1.000  |
|      | P1  | 単相負               |              |    | 1.000  | 1. 000 | 1.000  | 1.000  | 1.000  | 1.000 | 1.000  | 1.000 | 1.000  | 1. 000 |
|      |     | 荷一般               |              |    |        |        |        |        |        |       |        |       |        |        |
|      | RF1 | 単相全               |              |    | 1.000  | 0. 680 | 1.000  | 0.680  | 1.000  | 0.680 | 0.850  | 1.000 | 0.680  | 0.850  |
| 整流   |     | 波整流               |              |    |        |        |        |        |        |       |        |       |        |        |
| 器    | DEO | 3相                |              |    | 1 000  | 0.000  | 1 000  | 0.000  | 1 000  | 0.000 | 0.050  | 1 000 | 0.000  | 0.050  |
|      | RF3 | 全波電流              |              |    | 1.000  | 0. 680 | 1.000  | 0.680  | 1.000  | 0.680 | 0.850  | 1.000 | 0.680  | 0.850  |
|      |     | 単相全               |              |    |        |        |        |        |        |       |        |       |        |        |
|      | CV1 | <b>連作主</b><br>波整流 |              |    | 1.000  | 0.900  | 1.000  | 0.900  | 1.000  | 0.900 | 0.900  | 1.000 | 0.900  | 0.900  |
|      |     | 3相                |              |    |        |        |        |        |        |       |        |       |        |        |
|      | CV3 | 全波                |              |    | 1.000  | 0. 900 | 1.000  | 0. 900 | 1.000  | 0.900 | 0. 900 | 1.000 | 0.900  | 0.900  |
| CVCF |     | 電流                |              |    |        |        |        |        |        |       |        |       |        |        |
|      |     | 6相                |              |    |        |        |        |        |        |       |        |       |        |        |
|      | CV6 | 全波                |              |    | 1.000  | 0.900  | 1.000  | 0.900  | 1.000  | 0.900 | 0.900  | 1.000 | 0.900  | 0.900  |
|      |     | 電流                |              |    |        |        |        |        |        |       |        |       |        |        |
|      |     |                   | 直流サイリスタレオナード | TH | 0.000  | 1.000  | 0.000  | 1.000  | 0.000  | 1.000 | 0.000  | 0.000 | 1.000  | 0.000  |
| -18  |     |                   | 直流M-G        | MG | 1.000  | 0. 540 | 1.000  | 0.540  | 1.000  | 0.540 | 0.500  | 1.000 | 0.540  | 0.500  |
| エレヘ゛ | EV  |                   | 交流帰還制御       | FB | 1.000  | 0. 204 | 1.000  | 0. 204 | 1.000  | 0.204 | 0.800  | 1.000 | 0.204  | 0.800  |
| 7    |     |                   | 交流 VVVF      | VF | 0.000  | 0.340  | 0.000  | 0.340  | 0.000  | 0.340 | 0.000  | 0.000 | 0.340  | 0.000  |
|      |     |                   | 油圧制御         | OY | 1.000  | 0.400  | 1.000  | 0.400  | 1.000  | 0.400 | 0.500  | 1.000 | 0.400  | 0.500  |

## イ 始動中

|    | _ 1 | 74                         | <u> </u>      |     |                                 |        |        |        |        |        |        |        |        |        |        |
|----|-----|----------------------------|---------------|-----|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|    |     |                            |               | 1   | 出力                              |        |        | 始重     | 协時定数   |        |        |        |        |        |        |
| 負  | 記   | 種                          | <i>11.</i> ≪L |     | 範囲                              |        |        |        |        | 始重     | 助中     |        |        |        |        |
| 荷  | 号   | 類                          | 始動            | 記   | kW                              | RC     | G 2    | R (    | 3 3    |        | RE2    |        |        | RE3    | 1      |
|    |     |                            | 方式            | 号   | (*4)                            | k s    | Z'm    | k s    | Z'm    | k s    | Z' m   | cosθs  | k s    | Z' m   | cosθs  |
|    |     |                            |               |     | (1)                             |        |        |        |        |        |        |        |        |        |        |
|    |     |                            |               |     | 2                               |        |        |        |        |        |        |        |        |        |        |
|    |     |                            | ラインスタート       | L   | 3                               | 0.000  | 0.650  | 1.000  | 0.650  | 0.000  | 0.650  | 0.750  | 1.000  | 0.650  | 0.750  |
|    |     |                            |               |     | (4)                             |        |        |        |        |        |        |        |        |        |        |
|    |     |                            |               |     | ①                               |        |        |        |        |        |        | 0.600  |        |        | 0.600  |
|    |     |                            | Y-Δ始動         |     | 2                               |        |        |        |        |        |        | 0.500  |        |        | 0.500  |
|    |     |                            | (最大/次)        | Y   | 3                               | 0.667  | 0. 120 | 0.667  | 0. 120 | 0.667  | 0.120  | 0.400  | 0. 667 | 0.120  | 0.400  |
|    |     |                            |               |     | 4                               |        |        |        |        |        |        | 0.300  |        |        | 0.300  |
|    |     |                            |               |     | 1                               |        |        |        |        |        |        |        |        |        |        |
|    |     |                            | Y-Δ始動         | Y   | 2                               | 0.000  | 0. 650 | 1.000  | 0. 650 | 0.000  | 0.650  | 0. 750 | 1.000  | 0. 650 | 0. 750 |
|    |     |                            | (その他)         | 1   | 3                               | 0.000  | 0.000  | 1.000  | 0.000  | 0.000  | 0.000  | 0.100  | 1.000  | 0.000  | 0.100  |
|    |     |                            |               |     | 4                               |        |        |        |        |        |        |        |        |        |        |
|    |     |                            | クローズド         |     | 1                               |        |        |        |        |        |        | 0.600  |        |        | 0.600  |
|    |     |                            | Y-Δ始動         | YC  | 2                               | 0. 333 | 0. 120 | 0.667  | 0. 120 | 0.500  | 0.120  |        | 0.667  | 0.120  | 0. 500 |
|    |     |                            | (最大/次)        |     | 3                               |        |        |        |        |        |        | 0. 400 |        | 0. 400 |        |
|    |     | 低圧                         |               |     | 4                               |        |        |        |        |        |        | 0.300  |        |        | 0.300  |
|    |     | 電動                         | クローズド         |     | 1                               |        |        |        |        |        |        |        |        |        |        |
| Ŋ  | MLT | 機<br>(トップ                  | Y-Δ始動         | YC  | 3                               | 0.000  | 0.650  | 1.000  | 0.650  | 0.000  | 0.650  | 0.750  | 1.000  | 0.650  | 0.750  |
|    |     | ランナーモ                      | (その他)         |     | 4)                              |        |        |        |        |        |        |        |        |        |        |
|    |     | -9)                        |               |     | 1                               |        |        |        |        |        |        | 0.600  |        |        | 0.600  |
|    |     |                            | リアクトル         | l R | 2                               |        |        |        |        |        | 0, 120 | 0. 500 |        |        | 0. 500 |
| 誘導 |     |                            | 始動            | H   | l R                             | 3      | 0.000  | 0. 120 | 0.700  | 0. 120 | 0.000  | 0.120  | 0.400  | 0.490  | 0. 120 |
| 電動 |     |                            |               |     | 4                               |        |        |        |        |        |        | 0.300  |        |        | 0.300  |
| 機  |     |                            |               |     | 1                               |        |        |        |        |        |        | 0.600  |        |        | 0.600  |
|    |     |                            | コンドルファ始       | С   | 2                               | 0.000  | 0. 120 | 0. 490 | 0. 120 | 0.000  | 0. 120 | 0.500  | 0.490  | 0. 120 | 0.500  |
|    |     |                            | 動             |     | 3                               | 0.000  | 0.120  | 0.430  | 0.120  | 0.000  | 0.120  | 0.400  | 0.430  | 0.120  | 0.400  |
|    |     |                            |               |     | 4                               |        |        |        |        |        |        | 0.400  |        |        | 0.400  |
|    |     |                            |               |     | 1                               |        |        |        |        |        |        |        |        |        | 0.600  |
|    |     |                            | 特殊コンドルフ       | SC  |                                 | 0.000  | 0. 120 | 0.420  | 0. 120 | 0.000  | 0.120  | 0.400  | 0.490  | 0.120  | 0. 500 |
|    |     |                            | ア始動           |     | 3                               |        |        |        |        |        |        |        |        |        | 0.400  |
|    |     |                            |               |     | <ul><li>4)</li><li>1)</li></ul> |        |        |        |        |        |        |        |        |        | 0.400  |
|    |     |                            | 連続電圧          |     | 2                               |        |        |        |        |        |        |        |        |        |        |
|    |     |                            | 制御始動          | VC  | 3                               | 0.000  | 0. 120 | 1.000  | 0.340  | 0.000  | 0.120  | 0.300  | 1.000  | 0.340  | 0.300  |
|    |     |                            |               |     | 4)                              |        |        |        |        |        |        |        |        |        |        |
|    |     |                            |               |     | (I)                             |        |        |        |        |        |        |        |        |        |        |
|    |     |                            |               |     | 2                               |        |        |        |        |        |        |        |        |        |        |
|    |     | 低圧                         | ラインスタート       | L   | 3                               | 0.000  | 0.680  | 1.000  | 0.680  | 0.000  | 0.680  | 0.800  | 1.000  | 0.680  | 0.800  |
|    |     | 電動                         |               |     | 4                               |        |        |        |        |        |        |        |        |        |        |
|    | MLO | 機 (1,1,7)                  |               |     | (1)                             |        |        |        |        |        |        | 0.700  |        |        | 0.700  |
|    | MLU | (トップ <sup>°</sup><br>ランナーモ | Y-Δ始動         | Y   | 2                               | 0. 667 | 0. 140 | 0. 667 | 0. 140 | 0. 667 | 0. 140 | 0.600  | 0. 667 | 0. 140 | 0.600  |
|    |     | 一夕以                        | (最大/次)        | 1   | 3                               | 0.007  | 0.140  | 0.007  | 0.140  | 0.007  | 0.140  | 0.500  | 0.007  | 0.140  | 0.500  |
|    |     | 外)                         |               |     | 4                               |        |        |        |        |        |        | 0.400  |        |        | 0.400  |
|    |     |                            | Y-Δ始動         | Y   | 1                               | 0.000  | 0. 680 | 1. 000 | 0. 680 | 0.000  | 0.680  | 0.700  | 1.000  | 0. 680 | 0.700  |
|    |     |                            | (その他)         |     | 2                               | 3. 300 | 0.500  | 1. 500 | 0.500  |        |        | 0.600  | 1. 000 |        | 0.600  |

|    |     |                    | T          |    |     | ı        | ı         | 1      | ı      | ı     | ı      | ı      | 1      | 1     | 1      |
|----|-----|--------------------|------------|----|-----|----------|-----------|--------|--------|-------|--------|--------|--------|-------|--------|
|    |     |                    |            |    | 3   |          |           |        |        |       |        | 0.500  |        |       | 0.500  |
|    |     |                    |            |    | 4   |          |           |        |        |       |        | 0.400  |        |       | 0.400  |
|    |     |                    |            |    | 1   |          |           |        |        |       |        | 0.700  |        |       | 0.700  |
|    |     |                    | クローズド      |    | 2   |          |           |        |        |       |        | 0.600  |        |       | 0.600  |
|    |     |                    | Y−Δ始動      | YC | 3   | 0. 333   | 0. 140    | 0.667  | 0. 140 | 0.500 | 0.140  | 0. 500 | 0.667  | 0.140 | 0. 500 |
|    |     |                    | (最大/次)     |    | (4) |          |           |        |        |       |        | 0.400  |        |       | 0.400  |
|    |     |                    |            |    | (1) |          |           |        |        |       |        | 0.700  |        |       | 0.700  |
|    |     |                    | クローズド      |    | 2   |          |           |        |        |       |        | 0.600  |        |       | 0.600  |
|    |     |                    | Y-Δ始動      | YC |     | 0.000    | 0.680     | 1.000  | 0.680  | 0.000 | 0.680  |        | 1.000  | 0.680 |        |
|    |     |                    | (その他)      |    | 3   |          |           |        |        |       |        | 0.500  |        |       | 0.500  |
|    |     |                    |            |    | 4   |          |           |        |        |       |        | 0.400  |        |       | 0.400  |
|    |     |                    |            |    | 1   |          |           |        |        |       |        | 0.700  |        |       | 0.700  |
|    |     |                    | リアクトル      | R  | 2   | 0.000    | 0. 140    | 0. 700 | 0. 140 | 0.000 | 0.140  | 0.600  | 0. 490 | 0.140 | 0.600  |
|    |     |                    | 始動         |    | 3   |          |           |        |        |       |        | 0. 500 |        |       | 0. 500 |
|    |     |                    |            |    | 4   |          |           |        |        |       |        | 0.400  |        |       | 0.400  |
|    |     |                    |            |    | 1   |          |           |        |        |       |        | 0.700  |        |       | 0.700  |
|    |     |                    | コンドルファ始    |    | 2   |          |           |        |        |       |        | 0.600  |        |       | 0.600  |
|    |     |                    | 動          | С  | 3   | 0.000    | 0. 140    | 0. 490 | 0. 140 | 0.000 | 0.140  | 0. 500 | 0.490  | 0.140 | 0. 500 |
|    |     |                    |            |    | 4   |          |           |        |        |       |        | 0.500  |        |       | 0.500  |
|    |     |                    |            |    | (Ī) |          |           |        |        |       |        |        |        |       | 0.700  |
|    |     |                    | 特殊コンドルフ    |    | 2   |          |           |        |        |       |        |        |        |       | 0.600  |
|    |     |                    | ア始動        | SC | 3   | 0.000    | 0. 140    | 0.420  | 0.140  | 0.000 | 0.140  | 0.500  | 0.490  | 0.140 | 0.500  |
|    |     |                    | ) yr 30    |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     |                    |            |    | 4   |          |           |        |        |       |        |        |        |       | 0.500  |
|    |     |                    |            |    | 1   |          |           |        |        |       |        |        |        |       |        |
|    |     |                    | 連続電圧       | VC | 2   | 0.000    | 0. 140    | 1.000  | 0.340  | 0.000 | 0. 140 | 0.400  | 1.000  | 0.340 | 0.400  |
|    |     |                    | 制御始動       |    | 3   |          |           |        |        |       |        |        |        |       |        |
|    |     |                    |            |    | 4   |          |           |        |        |       |        |        |        |       |        |
|    |     |                    | ラインスタート    | L  |     | 0.000    | 0. 180    | 1.000  | 0.680  | 0.000 | 0.180  | 0.400  | 1.000  | 0.680 | 0.400  |
|    |     | 高圧                 | Y-Δ始動      | Y  |     | 0.667    | 0. 180    | 0.667  | 0. 180 | 0.667 | 0.180  | 0.400  | 0.667  | 0.180 | 0.400  |
|    | MH  | 電動                 | リアクトル始動    | R  |     | 0.000    | 0.180     | 0.700  | 0.180  | 0.000 | 0.180  | 0.400  | 0.700  | 0.180 | 0.400  |
|    |     | 機                  | コンドルファ始動   | С  |     | 0.000    | 0.180     | 0.490  | 0.180  | 0.000 | 0.180  | 0.400  | 0.490  | 0.180 | 0.400  |
|    |     |                    | 特殊コンドルファ始動 | SC |     | 0.000    | 0.180     | 0.420  | 0.180  | 0.000 | 0.180  | 0.470  | 0.420  | 0.180 | 0.470  |
|    |     | インバー               |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     | タ電動                |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    | VFT | 機(トッ               |            |    |     | 0.000    | 0. 120    | 1.000  | 0.650  | 0.000 | 0.120  | 0.850  | 1.000  | 0.650 | 0.850  |
|    |     | フ <sup>°</sup> ランナ |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     | -モータ)              |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     | インハ゛ー              |            |    |     |          |           | -      |        |       |        |        |        |       |        |
|    |     | タ電動                |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    | ume | 機(トッ               |            |    |     | 0.00-    | 0 * * * * |        | 0.25   | 0.05- | 0.1    | 0.05-  |        | 0.25  | 0.05-  |
|    | VF0 | プ <sup>°</sup> ランナ |            |    |     | 0.000    | 0. 140    | 1.000  | 0.680  | 0.000 | 0.140  | 0.850  | 1.000  | 0.680 | 0.850  |
|    |     | - t - 9            |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     | 以外)                |            | L  | L   |          |           |        |        |       |        |        |        |       |        |
|    |     | 巻線                 |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     | 形                  |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    | MM  | 電動                 |            |    |     | 0.000    | 0. 450    | 1.000  | 0.450  | 0.000 | 0.450  | 0.700  | 1.000  | 0.450 | 0.700  |
|    |     | 機                  |            |    |     |          |           |        |        |       |        |        |        |       |        |
|    |     | 双固                 |            |    | 1   | 0.000    | 0. 408    | 1.000  | 0.408  | 0.000 | 0.408  | 0.650  | 1.000  | 0.408 | 0.650  |
|    |     | 定子                 |            |    | 2   | 0.000    | 0. 408    | 1. 000 | 0. 408 | 0.000 | 0.408  | 0.650  | 1. 000 | 0.408 | 0.650  |
|    | SM1 | 電動                 |            |    | 3   | 0.000    | 0. 408    | 1. 000 | 0. 408 | 0.000 | 0.408  | 0.700  | 1. 000 | 0.408 | 0.700  |
|    |     | 機                  |            |    | 4   | 0.000    | 0. 392    | 1.000  | 0. 392 | 0.000 | 0. 392 | 0.700  | 1.000  | 0.392 | 0.700  |
| 電灯 |     | 白熱                 |            |    | (1) | 0.000    | 0.004     | 1.000  | V. 004 | 0.000 | 0.004  | 0.100  | 1.000  | 0.004 | 0.100  |
| 差込 | EL  |                    |            |    |     | 0.000    | 1.000     | 1.000  | 1.000  | 0.000 | 1.000  | 1.000  | 1.000  | 1.000 | 1.000  |
| 左心 |     | 灯                  |            |    | l   | <u> </u> | <u> </u>  |        | l      | l     | l      | l      | l      | l     | l      |

|      | DI  | 蛍光         |              |    | 0.000  | 1 000  | 1 000  | 1 000  | 0.000 | 1 000  | 1 000  | 1 000 | 1 000  | 1 000  |
|------|-----|------------|--------------|----|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|
|      | FL  | 灯          |              |    | 0.000  | 1. 000 | 1. 000 | 1. 000 | 0.000 | 1.000  | 1.000  | 1.000 | 1.000  | 1.000  |
|      | CO  | 差込         |              |    | 0, 000 | 1.000  | 1. 000 | 1. 000 | 0,000 | 1.000  | 1. 000 | 1.000 | 1.000  | 1.000  |
|      |     | 機器         |              |    | 0.000  | 1.000  | 1.000  | 1.000  | 0.000 | 1.000  | 1.000  | 1.000 | 1.000  | 1.000  |
|      | DN  | 電熱         |              |    | 0.000  | 1. 000 | 1.000  | 1.000  | 0.000 | 1.000  | 1. 000 | 1.000 | 1.000  | 1.000  |
|      |     | 負荷         |              |    |        |        |        |        |       |        |        |       |        |        |
|      | P1  | 単相負        |              |    | 0.000  | 1.000  | 1.000  | 1.000  | 0.000 | 1.000  | 1.000  | 1.000 | 1.000  | 1.000  |
|      |     | 荷一般        |              |    |        |        |        |        |       |        |        |       |        |        |
|      | RF1 | 単相全<br>波整流 |              |    | 0.000  | 0.680  | 1.000  | 0.680  | 0.000 | 0.680  | 0.850  | 1.000 | 0.680  | 0.850  |
| 整流   |     |            |              |    |        |        |        |        |       |        |        |       |        |        |
| 器    | DDO | 3相         |              |    | 0.000  | 0.000  | 1 000  | 0.000  | 0.000 | 0.000  | 0.050  | 1 000 | 0.000  | 0.050  |
|      | RF3 | 全波電流       |              |    | 0.000  | 0. 680 | 1.000  | 0. 680 | 0.000 | 0.680  | 0.850  | 1.000 | 0.680  | 0.850  |
|      |     | 単相全        |              |    |        |        |        |        |       |        |        |       |        |        |
|      | CV1 | 波整流        |              |    | 0.000  | 0.900  | 1.000  | 0.900  | 0.000 | 0.900  | 0.900  | 1.000 | 0.900  | 0.900  |
|      |     | 3相         |              |    |        |        |        |        |       |        |        |       |        |        |
|      | CV3 | 全波         |              |    | 0.000  | 0. 900 | 1.000  | 0. 900 | 0.000 | 0.900  | 0. 900 | 1,000 | 0.900  | 0.900  |
| CVCF | 010 | 電流         |              |    | 0.000  | 0.000  | 1.000  | 0.000  | 0.000 | 0.000  | 0.000  | 1.000 | 0.000  | 0.000  |
|      |     | 6相         |              |    |        |        |        |        |       |        |        |       |        |        |
|      | CV6 | 全波         |              |    | 0.000  | 0. 900 | 1.000  | 0. 900 | 0.000 | 0.900  | 0. 900 | 1.000 | 0.900  | 0. 900 |
|      |     | 電流         |              |    |        |        |        |        |       |        |        |       |        |        |
|      |     |            | 直流サイリスタレオナード | TH | 0.000  | 1.000  | 1.000  | 0.340  | 0.000 | 1.000  | 0.000  | 1.000 | 0.340  | 0.800  |
|      |     |            | 直流M-G        | MG | 1.000  | 0. 270 | 1.000  | 0. 270 | 1.000 | 0. 270 | 0.500  | 1.000 | 0.400  | 0.850  |
| エレヘ゛ | EV  |            | 交流帰還制御       | FB | 0.000  | 0. 204 | 1.000  | 0. 204 | 0.000 | 0.204  | 0.000  | 1.000 | 0.204  | 0.800  |
| -9-  |     |            | 交流 VVVF      | VF | 0.000  | 0. 340 | 1.000  | 0.340  | 0.000 | 0.340  | 0.000  | 1.000 | 0.340  | 0.800  |
|      |     |            | 油圧制御         | OY | 1.000  | 0. 200 | 1.000  | 0. 200 | 1.000 | 0. 200 | 0.500  | 1.000 | 0. 200 | 0.500  |

## (4) エレベーター台数による換算係数

| 台数による換算 | 台数(n) | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 1 0   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 係数      | U v   | 1. 00 | 2. 00 | 2. 70 | 3. 10 | 3. 25 | 3. 30 | 3. 71 | 4. 08 | 4. 45 | 4. 80 |

### (5) 低圧電動機の力率、効率表

### 低圧電動機 (トップランナーモータ) の力率、効率表

| 定格出力     | 効 率      | 力率              |
|----------|----------|-----------------|
| m i (kW) | $\eta$ i | $\cos \theta$ i |
| 0.75     | 0. 755   | 0. 666          |
| 1.50     | 0.825    | 0. 690          |
| 2.20     | 0.843    | 0. 713          |
| 3.70     | 0.865    | 0. 737          |
| 5. 50    | 0.880    | 0. 765          |
| 7. 50    | 0.891    | 0. 767          |
| 11.00    | 0. 902   | 0. 771          |
| 15. 00   | 0. 902   | 0. 776          |
| 18. 50   | 0. 910   | 0. 780          |
| 22. 00   | 0.910    | 0. 784          |
| 30.00    | 0.917    | 0. 793          |
| 37.00    | 0. 924   | 0.806           |

備考 中間値の場合は直近下位の値を、37kWを超え375kW以下のものは37kWの値を使用する。

### (6) 低圧電動機(トップランナーモータ以外)の力率、効率表

| 定格出力     | 効 率    | 力率              |
|----------|--------|-----------------|
| m i (kW) | ηi     | $\cos \theta$ i |
| 0.75     | 0. 745 | 0. 720          |
| 1. 50    | 0. 785 | 0. 775          |
| 2. 20    | 0.810  | 0.800           |
| 3. 70    | 0.835  | 0.800           |
| 5. 50    | 0.850  | 0.800           |
| 7. 50    | 0.860  | 0.805           |
| 11.00    | 0.870  | 0.810           |
| 15.00    | 0.880  | 0.815           |
| 18. 50   | 0.890  | 0.820           |

| 22.00 | 0.895  | 0.820 |
|-------|--------|-------|
| 30.00 | 0.900  | 0.825 |
| 37.00 | 0. 900 | 0.830 |

備考 0.75kW未満のときは、0.75kWの値を、中間値の場合は直近下位の値を、37kWを超えるものは37kWの値を使用する。

# (7) 高圧電動機の力率、効率表

| 定格出力    | 効 率      | 力率              |
|---------|----------|-----------------|
| mi (kw) | $\eta$ i | $\cos \theta$ i |
| 37      | 0. 855   | 0. 800          |
| 40      | 0. 860   | 0. 805          |
| 50      | 0. 870   | 0. 815          |
| 55      | 0. 875   | 0. 820          |
| 60      | 0. 875   | 0. 825          |
| 75      | 0. 880   | 0. 830          |
| 100     | 0. 890   | 0. 845          |
| 110     | 0. 890   | 0. 845          |
| 125     | 0. 895   | 0. 850          |
| 150     | 0. 900   | 0. 855          |
| 200     | 0. 905   | 0. 860          |

備考 37kw 未満のときは、37kw の値を、中間値の場合は直近下位の値を、200kw を超えるものは 200kw の値を使用する。

### 2 発電機の出力計算用諸元値

| 項     | 目                       | 記号              | 値           | 記 事                 |
|-------|-------------------------|-----------------|-------------|---------------------|
| ***   | 定常運転時効率                 | ηg              | 表2-2の値      | J E M1354 に規定する規約効率 |
| 効 率   | 短時間負荷時効率                | ηg'             | 表2-2の値×0.95 | 規約効率(JEM)の 95%      |
| 過電流耐力 | 発電機の短時間<br>(15 秒) 過電流耐力 | $\mathrm{KG}_3$ | 1. 500      | J E M1354 に規定よる。    |

| 許容逆相 電 流  | 発電機の許容逆相<br>電流による係数                          | KG4     | 0. 150<br>(0. 150~0. 300)           | J E M1354 の規定は、0. 150 である。0. 150 を超える( )内の仕様のものは、特別仕様となり、特別発注となる。 |
|-----------|----------------------------------------------|---------|-------------------------------------|-------------------------------------------------------------------|
| 発電機定数     | 負荷投入時における電圧<br>降下を評価したインピー<br>ダンス分           | xd'g    | 0. 250<br>(0. 125~0. 430)           |                                                                   |
| 許 容 電圧降下  | エレベーターが含まれな<br>い一般負荷の場合<br>エレベーターが含まれる<br>場合 | ΔΕ      | 0. 250<br>(0. 200~0. 300)<br>0. 200 |                                                                   |
| 力率        | 発電機の定格力率                                     | cos θ g | 0. 800                              |                                                                   |
| 回転数低下電圧降下 | 瞬時回転数低下、電圧降<br>下による投入負荷減少係<br>数              | fv      | 備考の計算式により求めら<br>れた値                 | 2 — 1 項参照                                                         |

#### 備考 1 ( )内の値は、特別仕様の場合に用いるものとする。

- 2 KG3は、K $\leq$ 50kWの場合には、形式認定を受けた自家発電装置に限り KG $_3$ =1.65とすることができる。
- 3 xd'gは、2極機でK≤50kWの場合には、形式認定を受けた自家発電 装置に限りxd'g=0. 125 とすることができる。
- 4 fv の計算式は、次のとおりとする。

 $fv_1=1$ . 000-0. 120×M3/K

 $fv_2=1.000-0.240\times M2'$  /K

 $fv_3=1.000-0.240\times M3'$  /K

# 2-1 瞬時回転数低下、電圧降下による負荷減少係数(fv)の値 通常の場合は、 $fv_1$ 、 $fv_2$ 、 $fv_3=1$ .0 とし、次の条件に全て適合する場合は、次による。

- ① すべて消防負荷で、下式の $M_3$ , $M_2$ ', $M_3$ 'に該当する負荷機器は、軽 負荷(ポンプ類)であること。
- ② 原動機は、ディーゼル機関又はガスタービン(一軸)とし、ディーゼル機関の場合は、K≤35kW、ガスタービンの場合は、K≤55kWであること。
- ③ 電動機の始動方式は、ラインスタート、Y-Δ始動(クローズドを含む)、リアクトル始動、コンドルファ始動、特殊コンドルファ始動であること。

- ④ 負荷にエレベーターがないこと。
- ⑤ 負荷に分負荷がないこと。
- ⑥ M/K≥0.333であること。 計算式

 $fv_1=1.00-0.12\times M_3/K$ 

 $fv_2=1$ . 00-0. 24× $M_2$ '/K

 $fv_3=1.00-0.24\times M_3'$  /K

## 2-2 発電機効率

| 定村      | 発電機効率 |       |  |
|---------|-------|-------|--|
| kVA     | KW    | η g   |  |
| 20. 0   | 16    | 79. 0 |  |
| 37. 5   | 30    | 82. 5 |  |
| 50. 0   | 40    | 84. 3 |  |
| 62. 5   | 50    | 85. 2 |  |
| 75. 0   | 60    | 85. 7 |  |
| 100. 0  | 80    | 86. 7 |  |
| 125. 0  | 100   | 87. 6 |  |
| 150. 0  | 120   | 88. 1 |  |
| 200. 0  | 160   | 88. 9 |  |
| 250. 0  | 200   | 89. 5 |  |
| 300. 0  | 240   | 90. 0 |  |
| 375. 0  | 300   | 90. 6 |  |
| 500. 0  | 400   | 91. 3 |  |
| 625. 0  | 500   | 91. 9 |  |
| 750. 0  | 600   | 92. 3 |  |
| 875. 0  | 700   | 92. 5 |  |
| 1000. 0 | 800   | 92. 8 |  |
| 1250. 0 | 1000  | 93. 2 |  |
| 1500. 0 | 1200  | 93. 4 |  |
| 2000. 0 | 1600  | 93. 8 |  |

| 2500. 0 | 2000 | 93. 9 |
|---------|------|-------|
| 3125. 0 | 2500 | 94. 0 |

# 備考 1. 短時間過負荷時発電機効率ηg'は上表のηgの値の95%とする。

2. 20kVA 未満のときは、20kVA の値を、中間値の場合は直近上位の値を、3125kVA を超えるものは 3125 kVA の値とする。

#### 3 原動機の出力計算用諸元値

|             | 発電機出力              | 発電機出力<br>ディーゼル<br>エンジン | ガスタービン     |            | ガスエンジン      |           |
|-------------|--------------------|------------------------|------------|------------|-------------|-----------|
| 記号          |                    |                        | 一軸形        | 二軸形        | 三元触媒方式      |           |
|             | (kW)               |                        |            |            | 過給機無し       | 過給機有り     |
|             | 125 以下のもの          | 0. 8~1. 1              | 1. 0~1. 1  | _          |             |           |
|             | 120 9( ) ()        | (1. 0)                 | (1. 0)     |            |             |           |
|             | 125 を超え 250 以下     | 0. 6~1. 1              | 1. 0~1. 1  | _          |             |           |
|             | 120 を起え 200 次十     | (0. 8)                 | (1. 0)     |            |             | 0. 3~1. 0 |
|             | 050 * 17 > 400 PLT | 0. 5~1. 0              | 0. 85~1. 0 | _          | 0. 5~1. 0   | (0. 5)    |
| 3           | ε 250 を超え 400 以下   | (0. 7)                 | (1. 0)     |            | (0. 7)      |           |
|             | 400 + 17 > 000 NT  | 0. 5~1. 0              | 0. 7~1. 0  | 0. 7~0. 85 |             |           |
|             | 400 を超え 800 以下     | (0. 6)                 | (1. 0)     | (0. 75)    |             |           |
|             | 800 を超え 3000 以下    | 0. 5~1. 0              | 0. 7~1. 0  | 0. 5~0. 75 |             | 0. 2~1. 0 |
|             |                    | (0. 5)                 | (0. 85)    | (0. 7)     |             | (0. 4)    |
|             |                    | 1. 0~1. 3              | 1. 05~1. 3 | 1. 05~1. 3 | 1. 0~1. 1   | 1. 1      |
| γ<br>(15 秒) | _                  | (普通形 1.0)              | (1. 1)     | (1. 1)     | (1. 05)     | (1. 1)    |
| (10 19)     |                    | (長時間形 1. 1)            | (1. 1)     | (1. 1)     | (1. 05)     | (1. 1)    |
| γ           | 250 以下のもの          | 1. 0~1. 3              | 1. 1~1. 5  | 1. 1~1. 3  | 1. 0~1. 1   | 1. 1      |
|             |                    |                        | (1. 3)     |            | 1. 0 ~ 1. 1 | 1. 1      |
|             | 250 を超え 400 以下     | (普通形 1.0)              | 1. 1~1. 5  | (1. 1)     | (1 05)      | (1. 1)    |
| (1秒)        |                    | (長時間形 1. 1)            | (1. 2)     |            | (1. 05)     | (1. 1)    |
| a           | _                  | 0. 1ε∼ε                |            | 3          | 0. 1ε∼ε     | 0. 1ε∼ε   |
|             |                    | (0. 25 ε)              | 3          |            | (0. 25 ε)   | (0. 25 ε) |

- 備考 1. この  $\epsilon$  ,  $\gamma$  及び a の値は、発電機端子における原動機固有の特性としてこの表に示すとおりである。計画時点で原動機を限定できない場合には、  $\epsilon$  ,  $\gamma$  及び a の値は、括弧内の値を使用して計算する。
  - 2. この表に示す出力を超える大容量のものについては、当該発電装置の 実測値とする。
  - 3. ガスエンジン発電装置で希薄燃焼方式及びガスタービン発電装置で希薄予混合燃焼方式は、当該発電装置の実測値とする。
  - 4. γの値は、γ (15 秒) の値を用いる。
  - 5. 製造者の保証値を使用する場合は、その値を諸元値として計算を行ってよい。
  - 6. この値は、日本内燃力発電設備協会 NEGA G 151-1996 (発電機駆動 用原動機の負荷投入特性の指針) に準拠して作られており、εは原動

- 機の無負荷時投入許容量 (pu)、γ は原動機の短時間最大出力 (pu)、a は原動機の仮想全負荷時投入許容量 (pu) を示す。
- 7. 発電装置出力 24kW 以下、ディーゼルエンジン駆動で単一負荷に近い場合等においては、自家発電装置の認定取得者に限り、  $\epsilon \le 1$ . 2,  $\gamma \le 1$ . 4 とすることができる。